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Abstract

Air surveillance of United States territory is an essential Department of De-

fense (DoD) function. In the event of an incoming aerial attack on North America

such as a hijacked or enemy airplane, missile, or any other National Security threat,

the DoD, Department of Homeland Security (DHS), and Federal Aviation Admin-

istration (FAA) surveillance capabilities are critical to discovering and tracking the

threat so that it can be eliminated. Many of the currently used surveillance radar will

reach the end of their design life within ten to twenty years. The current surveil-

lance system has significant low altitude surveillance gaps and limited ability to

detect small radar cross section objects such as small missiles. By replacing the cur-

rent radar network with a single integrated network of Multifunction Phased Array

Radar (MPAR) units, surveillance capabilities can be enhanced and life cycle cost

can be reduced. The problem of determining the location and number of required

MPAR units to provide sufficient air surveillance of a given area is a large problem

that could require a prohibitively long time to solve. The method used to solve

this problem must be capable of handling changes to the system such as changes

to MPAR capabilities or surveillance area. By representing the area of surveillance

as a polygon and the MPAR units as guards with a defined circle of detection, this

problem as well as other similar surveillance or coverage problems can be expressed

with easily adjustable parameters.

The problem of covering the interior and exterior of a polygon region with

a minimal number of guards with homogeneous capabilities is not well researched.

There are no methods for determining the minimal number of guards required to

cover the interior and exterior of a polygon at a desired coverage level less than 100

percent. This paper describes an iterative method for determining a small number

and location of guards required to cover a convex polygon both fully and at a specified
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percentage coverage less than 100 percent. Analysis of test cases compared with other

papers are presented. Specifically, results are presented to show that the developed

methodology produces a smaller number of required MPAR units using less time than

a comparable method presented in the literature. A goodness measure of the method

is presented with respect to a lower bound for over 1000 test cases. Results for the

United States Northern Command MPAR instance of this problem are presented

to provide full and partial coverage of the Continental United States and 25 key

cities of interest. The methodology developed in this thesis can be used to provide

minimal cost surveillance recommendations over key areas or events, placement of

communications resources, or other limited range resources.
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Coverage of Continuous Regions in Euclidean Space Using

Homogeneous Resources With Application to the Allocation of the

Phased Array Radar Systems

1. Problem Statement and Overview

1.1 Problem Motivation

Air surveillance of United States territory is an essential Department of De-

fense (DoD) function. In the event of an incoming aerial attack on North America

such as a hijacked or enemy airplane, missile, or any other National Security threat,

the DoD, Department of Homeland Security (DHS), and Federal Aviation Admin-

istration (FAA) surveillance capabilities are critical to discovering and tracking the

threat so that it can be eliminated. The current National Airspace System (NAS)

provides coverage from the surface to 60,000 feet Mean Sea Level (MSL) using pri-

mary and secondary FAA long and short range radars, defense radars, and additional

surveillance systems along the borders and other areas of interest [?]. The current

radar system consists of weather and aerial surveillance radars that operate by using

a rotating antenna to sweep a large area [?]. Many of these radars will reach the end

of their design life within ten to twenty years [?]. The current surveillance system

has significant low altitude surveillance gaps and limited ability to detect small radar

cross section objects such as small missiles [?].

The Multi-Function Phased Array Radar (MPAR) has several mission capa-

bilities including weather and aerial surveillance. A single MPAR unit is capable

of tracking current weather conditions such as developing thunderstorms while also

tracking numerous independently operating private and commercial aircraft. Cur-

rent technology requires multiple radar units to independently track aircraft and

weather. These MPAR units operate by directing an array of radar beams from a
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stationary surface instead of using a rotating antenna [?]. As a result of the reduced

number of moving parts, the MPAR have increased reliability over traditional radar

technology [?]. By replacing the current radar network with a single integrated net-

work of MPAR units, surveillance capabilities can be greatly enhanced and life cycle

cost can be reduced[?]. These capability improvements as well as increased reliability

support national objectives outlined in the “Recommendations for Development and

Implementation of Surveillance Capabilities in Support of the National Strategy for

Aviation Security” [?]. This document specifies a desired outcome of a “Fully inte-

grated, low medium and high altitude surveillance coverage with seamless network

integration that leverages the full range of inter-agency sensor systems, capabilities,

and analytic support tools to detect, monitor and track airborne objects with the

National Airspace System [?]”

Due to the current coverage gaps and age of the NAS, United States North-

ern Command (NORTHCOM) is investigating upgrading the NAS to use MPAR

technology. NORTHCOM is interested in determining the minimum number and lo-

cation of units required to attain a given percent coverage of the Continental United

States (CONUS) at different altitudes. Percent coverage is defined as the percent of

area over which coverage is desired within range of the MPAR units. Specifically,

the research sponsor, NORTHCOM J84, wants to determine the minimal number

and location of MPAR units required to achieve 100 percent coverage of CONUS,

at 500 feet Above Ground Level (AGL). The sponsor is interested in determining

the number and location of MPAR units required to cover 25 key cities of interest

within CONUS, given a radius around these points at varying altitudes and percent

coverages.

1.2 Problem Statement

Given an enclosed Area of Surveillance (AOS) and a set of resources( such as

guards, radars, cameras, security personnel, etc.) capable of seeing a set distance,

2



range, in all directions (360 degrees), the problem is to determine the smallest num-

ber of these resources required to cover the entire area. Any point in the AOS is

considered covered if it is within the defined range of at least one resource. Due to

other possible restrictions, it is also important to determine the smallest number of

resources required to partially cover the area at a specified percentage less than 100.

The purpose of this research is to develop a robust methodology for determining

a small number and location of resources (guards) with limited visibility range to

cover a given AOS. The developed methodology is applicable to problems related to

surveillance over key areas or events, the placement of key communications resources,

or other limited range resources.

1.2.1 NORTHCOM Application. In the NORTHCOM instance of this

problem, each MPAR is a guard with visibility range limited to line of sight detection

range of the MPAR unit and the AOS is CONUS. The developed methodology is

robust enough to handle system constraint changes such as range or altitude of

detection, desired AOS, and percent coverage.

1.2.2 Research Questions. This research seeks to determine if there are any

methods to quickly determine the smallest number and location of guards required

to cover a given AOS completely or at a specified percentage less than 100 percent.

This research seeks to develop a method to improve existing methods by providing

a more minimal solution using less computation time. Additionally, this research

seeks to determine how well the developed methodology performs as compared to

existing methods and as compared to a lower bound.

1.2.3 Research Scope. This research provides a methodology for deter-

mining a small set of guards required to cover a given AOS. The methodology is

capable of covering the entire area or a specified percentage (less than 100) of the

area. The coded heuristic is provided as well as computation results for a variety
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of test scenarios. Numerical results and computational time requirements are com-

pared with other continuous methods from the literature. A performance bound is

discussed for the developed methodology. Numerical results are also presented for

the NORTHCOM instance of this problem presented in Section ??.

1.3 Research Contribution

This research provides a review of available literature pertaining to covering

a continuous region with a small set of limited visibility guards. The applicabil-

ity and shortcomings of available methods are discussed. This research develops a

methodology to fill the current literature gap and provide a methodology capable

of determining a small set of guards for covering a given AOS at a specified level

of coverage. The effectiveness of this methodology as compared to the numerical

results and computational time of given methods is presented and a performance

measure of the method is provided.

1.4 Overview

1.4.1 Chapter 2: Literature Review. Chapter 2 reviews available literature

concerning similar problems. The applicability of several different models is discussed

as well as a review of papers that motivated the methodology further developed in

Chapter 3.

1.4.2 Chapter 3: Methodology. Chapter 3 outlines constraints and assump-

tions of the proposed methodology. An iterative method for determining a small set

of guards required to cover a given AOS completely and at a percentage less than

100 is presented (i.e. partial coverage). Performance results are also presented.

1.4.3 Chapter 4: Analysis and Results. Chapter 4 reviews analysis of the

presented methodology. This analysis includes results for several full coverage test

cases as compared with other methodologies found in the literature. A performance
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prediction of the methodology as compared to a provable bound is presented. Em-

pirical results are used to show the partial coverage methodology offered produces a

coverage level at or above the specified level. Results and analysis of the NORHT-

COM instance of the problem are presented for several specific coverage regions and

coverage levels.

1.4.4 Chapter 5: Conclusions. Chapter 5 discusses conclusions resulting

from the analysis of the methodology as well as the NORTHCOM problem. Future

work and additional applications are also discussed.
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2. Literature Review

2.1 Introduction

The question of how to optimally use a limited number of resources is not

new. Researchers have tried to answer this question in several different forms. Many

of these traditional problem models are limited in scope and or scale and not able

to handle NORTHCOM’s specific problem. This chapter outlines specific previous

research as well as existing methodologies that have been developed to determine

the minimal number and location of resources required to cover a defined area. This

chapter also discusses the limitations of existing research and why a new methodology

is required to fully answer NORTHCOM’s questions.

2.2 Definitions

A polygon, P , is typically defined as a set of ordered points p1, ..., pn ∈ <2,

pi = (xi, yi), n ≥ 3 called vertices and the edges defined by the line segments joining

adjacent points and point pn to point p1 [?, ?]. The polygon, P is said to be a simple

polygon if none of the non-consecutive edges of P intersect [?, ?]. For the purpose

of this research the term polygon will be used to refer to the simple polygon, P ,

as defined above along with its interior. A convex polygon is a simple polygon in

which a line segment drawn between any two points inside the polygon is completely

contained in the polygon [?]. A point p ∈ P is said to be visible from q ∈ P if the

line segment between p and q does not intersect the exterior of P [?]. A set C of

points in P is said to illuminate, guard, or cover P if every point in P is visible from

at least one point in C [?].

A diagonal of P is a line segment joining two nonadjacent vertices of P that

does not intersect an edge of P [?]. The triangulation of P is the decomposition of P

into triangles formed only from the edges and diagonals of P [?]. Any simple polygon

P that contains n vertices can be decomposed into n− 2 triangles [?]. Triangulation
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of polygons plays a central role in efficiently solving some resource location problems

and many algorithms have been studied to efficiently triangulate polygons [?].

2.3 Facility Location Problems

Facility Location Problems seek to determine the optimal location for a set of

facilities [?]. Modeled as integer programming problems, facility location problems

seek to determine the minimal cost set of facilities capable of achieving demand at

a set of points [?]. Facility location problems find the optimal set of n new facilities

chosen from a possible set of m > n sites such that the distance or cost between these

new facilities and r existing facilities is minimized [?]. The NORTHCOM problem

can be modeled as a facility location problem by discretizing the AOS to establish a

discrete set of possible locations for each MPAR unit as well as locations that must be

covered by the units. This application fits the NORTHCOM problem if the research

was restricted to using existing radar sites or federally owned land only. It would

also be applicable if only interested in surveilling a discrete set of points. Instead,

this research seeks to cover a continuous area rather than a set of discrete locations

within that area and assumes no limitations on possible facility locations. Because

of the limited set of possible resource locations and desired coverage points required

for Facility Location Problems, the NORTHCOM problem can more accurately be

represented by a model that accounts for the assumption of no limitations on possible

facility locations and the continuous AOS.

Facility Location Problems are difficult problems and therefore can have pro-

hibitively long computational times for solving large problems [?]. As a result of

the size of the AOS being significantly larger than each sensor’s radius of coverage,

the number of units required to achieve complete coverage is expected to be large.

According to the World Atlas, the area of the CONUS is 2,959,062 square miles [?].

Each individual MPAR can cover an area of 5026.55 square miles at 500 ft AGL. A

lower bound assuming zero coverage overlap requires over 588 MPAR units. This
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number is a lower bound on the problem and would require the shapes of coverage to

match perfectly side-by-side for each unit, which is not possible for a circular cover-

age area of the MPAR. Consequently, the computational time associated with solving

large-scale Facility Location Problems could be prohibitive for solving a problem as

large as the NORTHCOM one.

2.4 Art Gallery Problems

The Art Gallery problem, first addressed by Victor Klee in 1973 seeks to de-

termine the minimal number of guards necessary and sufficient to see the walls of

an art gallery represented as a 2D space [?, ?, ?, ?]. Classically, the art gallery is

a rectangular shape in the 2D plane with walls dividing the area into smaller rect-

angles [?]. The guards in the classic art gallery problem have 360 degree view with

unlimited visibility range [?]. More recent studies have expanded this definition to

include simple and orthogonal polygons with and without holes as well as limited

visibility directions such as search light problems [?]. Art Gallery problems seek to

determine the minimal cardinality set C such that all points in P are visible [?]. The

NORTHCOM problem can be represented as an art gallery problem where the AOS

is the polygon and MPAR units are the guards with limited visibility range.

2.5 Limited Visibility Problems

Defining illumination in the traditional way, as discussed above, assumes guards

have unlimited visibility range. This is not always a valid assumption. In the

NORTHCOM problem the MPAR units’ range is assumed to be constant and lim-

ited. The visibility range of each MPAR unit is a characteristic dependent on the

altitude of the object being detected. For example, if an object, such as a plane is

at an altitude of 500 feet AGL, the MPAR unit is capable of detecting this object at

40 Nautical Miles (NM) from the MPAR. If, however the obect is at an altitude of

20,000 feet AGL, the object could be detected at a range of 186 NM. The visibility
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range of the MPAR is dependent on the desired altitude of coverage. The visibility

range is calculated for a given altitude assuming line-of-site visibility for the MPAR.

An MPAR unit has a straight line of visibility while the Earth’s surface is round.

Due to functional requirements, MPAR units are built at a height of 100 feet AGL.

Based on this height and the desired altitude of coverage, a visibility range can be

derived as a result of the inherent curvature of the earth. At higher altitudes, objects

can be detected farther away. Consequently, a higher altitude of coverage equates

to a larger visibility range of the MPAR. Figure ?? depicts how this visibility range

is estimated based on the affect of the curvature of the earth.

Figure 1 Range Calculation for MPAR Units

In 2002 Giorgos Kazazakis and Antonis Argyros of the Institute of Computer

Science, Foundation for Research and Technology-Hellas in Heraklion, Crete, Greece

published a paper titled “Fast Positioning of Limited-Visibility Guards for the In-

spection of 2D Workspaces” in the Proceedings of IEEE [?]. This article develops

a methodology to efficiently determine a small number of guards required to cover

the edges of a polygon given limited visibility range of the guards [?]. The authors

develop a methodology that decomposes the initial polygon, P , into convex sub-

polygons [?]. A potential Observation Point (OP) is determined and the question is

asked “can all points in the current sub-polygon be [covered] by this point?” [?]. If

all points in the current sub-polygon can be covered by the OP then the OP is added

to the set of valid OPs in the solution and the sub-polygon is considered covered
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[?]. If not, the polygon is divided into more sub-polygons. This is repeated until all

points on the exterior of the original polygon are within illumination range of the

set of valid OPs [?].

According to Kazazakis and Argyros, the optimal OP “is the center of the

minimum-radius circle that contains the polygon” [?]. However, the selection of

the OP must be computationally inexpensive because the OP is recalculated at

every iteration. A common way to determine the OP is based on the Mean Point

(MP) of the polygon (Equation (??)) but this method produces an OP that will

result in more required guards in polygons with a long tail, such as the one shown

in Figure ?? [?]. Instead, using an observation point based on the median of the

polygon, as calculated by Equation (??), will result in a smaller number of required

guards because the selected point will be biased towards the long edge of the polygon

[?]. Kazazakis and Argyros present experimental results to demonstrate the use of

median point as the OP results in a smaller number of required guards than using

the MP as the OP [?].

MP =

∑n
i=1 pi
n

(1)

OP =
n∑
i=1

‖Ei‖Mi/

n∑
i=1

‖Ei‖ (2)

Mi = coordinates of midpoint of ith edge, Ei of polygon P (3)

‖Ei‖ =
√

(xi − xi+1)2 + (yi − yi+1)2 for i = 1, 2, ..., n− 1 (4)

‖En‖ =
√

(xn − x1)2 + (yn − y1)2 (5)
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Figure 2 Mean Point (MP) vs Median Point (OP)

After determining a potential OP, as shown in Figure ??, the Euclidean dis-

tance between each vertex of the polygon and the OP is calculated [?]. Equation

(??) shows how the distance from vertex i to the OP is calculated [?]. If the vertex

with the maximum distance from the OP (Maximum Distance Vertex (MDV)) is

within range of the guard (Figure ??(a)) then the entire polygon is covered and the

OP should be used [?]. Otherwise ( see Figure ??(b)), the polygon is not covered

from the single OP and should be divided into sub-polygons [?].

(a) Polygon (b) OP Calculation

Figure 3 Selecting an OP
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(a) Covered Polygon (b) Not Covered Polygon

Figure 4 Determining if a Polygon is Covered

di =
√

(xi − xOP )2 + (yi − yOP )2 (6)

A polygon not covered by the selected OP is divided into sub-polygons in-

spected using the same procedure as the original polygon [?]. Since each sub-polygon

requires a separate OP to cover, it is important to divide the polygon into as few

sub-polygons as required to ensure a minimal number of required OPs [?]. The line

used to divide the polygon should decrease the distance of the OP from the MDV

in the new sub-polygons as much as possible [?]. Using the line, L, defined by the

line perpendicular to the line between the MDV and OP and passing through the

OP will achieve this objective [?]. This line is shown in Figure ?? (a) as L and the

resultant sub-polygons are shown in Figure ?? (b).

An example of Kazazakis and Argyros’ method applied to a convex polygon is

shown in Figure ??. In this figure the line at the bottom right shows the visibility

range of the guards [?]. Line 1 is first chosen to divide the initial polygon [?]. When
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(a) Choice of L (b) Sub-polygons

Figure 5 Deviding a Nonvisible Polygon into Sub-polygons

the sub-polygons are not entirely covered they are divided again [?]. The final result

is shown with selected OPs shown as red dots inside the sub-polygons [?]. It can

be seen in this figure that the two triangles formed by lines 1,2, and 3 do not have

selected OPs. This is because Kazazakis and Argyros’ method is used to determine

a small set of guards required to guard the exterior of the original polygon [?].

According to Kazazakis and Argyros, coverage of the entire polygon, including the

interior, can be achieved by inspecting all of the sub-polygons instead of just those

with vertices on the exterior of the original polygon [?].

In the article, “Covering a Compact Polygonal Set by Identical Circles”, Stoyan

and Patsuk discuss methods for covering a compact polygonal set with identical cir-

cles of minimal radius [?]. Stoyan and Patsuk discuss finding the minimum visibility

range of a given number of guards to cover a polygon [?]. In this paper Stoyan and

Patsuk develop a method for testing if the polygon is covered based on a calculated

value that represents a measure for the uncovered area in P [?]. They present com-

putational results for covering a 100 by 100 square as well as several polygons with

different sizes and numbers of homogeneous guards [?].
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Figure 6 Example of Kazazakis and Argyros’ Method [?]

2.6 Conclusion

Current literature is lacking in methods for covering the interior and exterior of

a continuous region with limited visibility guards. Discrete techniques available for

similar problems do not account for key assumptions necessary to the NORTHCOM

problem such as a continuous AOS and may have prohibitively long computational

times. While Kazazakis and Argyros present a method for limited visibility coverage

of the exterior of a polygon and suggest the same method for covering the interior

of the polygon under the same conditions, little computational results or proof of

concept are presented. The literature does not present a method for covering a given

percentage, less than 100, of a polygonal region under limited visibility. Due to

functional or financial restrictions placed on the real world problems for which these

methods are applicable, the capability to look at less than full coverage would be

beneficial. This research seeks to fill this literature gap by developing a methodology
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that can be used to quickly determine a small set of limited visibility guards to cover

the interior and exterior of a polygon at a specified level of coverage less than or

equal to 100 percent.
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3. Methodology

3.1 Overview

Current literature is lacking in methods for covering the interior and exterior

of a continuous region with limited visibility guards. While Kazazakis and Argyros

[?] present a method for limited visibility coverage of the exterior of a polygon and

suggest the same method for covering the interior of the polygon under the same

conditions, little computational results or proof of concept are presented. The lit-

erature does not present a method for covering a given percentage, less than 100,

of a polygonal region under limited visibility. Due to functional or financial restric-

tions placed on the real world problems for which these methods are applicable, the

capability to look at less than full coverage is beneficial. The full coverage method

developed in this section is based on Kazazakis and Argyros’ method [?] discussed

in Chapter 2 with modifications to the selection of cut line. The partial coverage

methodology developed in this section is similarly based on Kazazakis and Argyros’

method [?], however uses a measure for the uncovered portion of the region inspired

by Stoyan and Patsuk’s ideas as presented in Chapter 2.

3.2 Definition of Terms

Area of Surveillance (AOS): The territory, defined by user input, over which surveil-

lance is required. This area is defined by latitude and longitudinal coordinates

describing the vertices of the area.

Guard: Resource providing coverage. For the NORTHCOM scenario each MPAR

unit is a guard.

Observation Point (OP): Location to station a guard as calculated by Equation

(??)

Circle of Detection: Circle around a guard such that any point within this circle is

covered.
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Visibility Range (β): Range from OP that an object is covered by the guard. β is

expressed as a single number representing the radius of the circle detection of

the guard

3.3 Mathematical Formulation

3.3.1 Inputs.

P = [p1, p2, ..., pn] where pi = (xi, yi) ∈ <2+ is the location of vertex i for the convex

polygon P .

β = visibility range of guard given in the same basic unit of measure as the coor-

dinate system for P .

δ = level of detection required, expressed as a percentage such that 0 < δ ≤ 100.

3.3.2 Outputs.

Z = z1, z2, ..., zr where zj = (xOPj
, yOPj

)

3.3.3 Assumptions. In order to determine a small set of guards required

to cover a given polygon several assumptions are made. The polygon, P is convex

and contained in the positive quadrant of the x, y plane. The set of guards have

homogeneous capabilities with visibility range β. The visibility of each guard is

constant and 360 degrees. The location of guards is constrained to P .

3.4 Overview of Formulation

Because of the assumptions stated in Section ??, this problem is similar to

the problem studied by Kazazakis and Argyros [?]. While the areas of coverage for

each sensor are circles of given radius, β, and P is a simple polygon as in Kazazakis

and Argyros’ problem, the additional questions related to different percent coverage,

δ, and coverage of the interior of P differ from Kazazakis and Argyros’ problem
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[?]. Because of the similar structure, the developed method decomposes the given

polygon P into sub-polygons using a method similar to Kazazakis and Argyros’ [?]

and similarly checks for 100 percent coverage by checking for coverage of the vertex

farthest away from the OP. However, the developed methodology also considers the

interior of P and uses a different cut line to divide the polygon into sub-polygons.

The methodology is also expanded to account for incidences of less than 100 percent

required coverage.

3.5 Median Observation Point with Adjusted Division (MOPAD) Methodology

Given inputs of convex polygon P , visibility range β, and percent coverage

0 < δ ≤ 100, a potential OP is calculated based on Kazazakis and Argyros’ method,

that is, the median point of the polygon is calculated using Equations (??)-(??) [?].

If P is covered at a level ≥ δ using the selected OP (see Sections ?? and ??) then

the OP is a valid point. If P is not covered at a level ≥ δ (see Sections ?? and ??)

then the OP is not valid and P must be divided into sub-polygons.

OP =
n∑
i=1

‖Ei‖Mi/
n∑
i=1

‖Ei‖ (7)

Where Mi = coordinates of midpoint of ith edge, Ei of polygon P (8)

‖Ei‖ =
√

(xi − xi+1)2 + (yi − yi+1)2 for i = 1, 2, ..., n− 1 (9)

‖En‖ =
√

(xn − x1)2 + (yn − y1)2 (10)

Kazazakis and Argyros divide P into sub-polygons using the line through the

OP that is perpendicular to the line between the OP and the MDV (shown as L

in Figure ?? (a)) [?]. Further assessment of this method (shown in Chapter 4)

shows that the results are not as good as expected. Consequently, a new method

for dividing P into sub-polygons was developed. Stoyan and Patsuk [?] present
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consistently more minimal numerical results than Kazazakis and Argyros’ [?] but do

not specify how they selected locations for the guards (see Chapter 4). However,

the numerical results presented by Stoyan and Patsuk show that the locations of

the guards are often in a grid-like pattern [?]. These results motivated the idea of

dividing P using only vertical or horizontal lines in order to maintain a more grid-like

structure for the locations.

The horizontal and vertical distances between the OP and the MDV, xdist and

ydist, are calculated (see Equation (??) and (??) respectively). If the horizontal

distance is larger than the vertical distance then P is divided using a horizontal

line. If the horizontal distance is smaller than the vertical distance, P is divided

using a vertical line. Three implementations of the Median Observation Point with

Adjusted Division (MOPAD) method are presented. The first, MOPAD1, divides

P using horizontal and vertical lines that pass through the OP. There are some

instances where three guards could sufficiently cover the width or height of P but

two guards cannot. For example, consider P = [0, 0; 1, 0; 1, 0.5; 0, 0.5; 0, 0] and

β = .35 (Figure ??). If only MOPAD 1 is implemented, these instances will result

in 4 guards being used instead of three because the MOPAD1 method will divide

P in half and then each of those sub-polygons in half again. In these instances,

dividing P in thirds will result in a smaller number of required guards. In order to

account for these instances, MOPAD2 and MOPAD3 were developed. The second

implementation, MOPAD2, divides P into thirds instead of halves if the xdist or ydist

is greater than 2β but less than 4β and in half otherwise. The third implementation,

MOPAD3, divides P into thirds using a vertical or horizontal line if the xdist or ydist

is between (1.5)β and (2.5)β and in half otherwise. To find the best solution, all

three implementations of the MOPAD methodology are run on a given problem and

the best solution is used. Best is defined as the smallest number of guards needed

to provide full coverage.
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(a) MOPAD1 Implemented on P (b) MOPAD2 or MOPAD3 Imple-
mented on P

Figure 7 MOPAD1 vs MOPAD2 and MOPAD3

xdist = |xMDV − xOP | (11)

ydist = |yMDV − yOP | (12)

3.5.1 Checking Visibility for Full Coverage. Given δ = 100, the distance

between the MDV and the OP, denoted as α is calculated as shown in Equation (??)

[?]. If α ≤ β then P is covered and the OP is considered a valid point. If α > β

then the OP is not valid and P must be divided into sub-polygons as described in

Section ??.

α = max
i=1,...,n

√
(xi − xOP )2 + (yi − yOP )2 (13)

3.5.2 Checking Visibility for Partial Coverage. To determine if P is covered

at a level greater than or equal to 0 < δ < 100, an estimate of the percent covered

portion of P , κ is calculated and compared to the required level of coverage. This

concept is motivated by a similar measure used in Stoyan and Patsuk’s paper to

estimate the uncovered portion of P [?]. The distance between each vertex of P and
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the OP is calculated as shown in Equation (??). The value κ is calculated using

Equation (??). κ is then compared to λ, as calculated in Equation (??). For more

information on how this relationship was determined see Section ??.

disti =
√

(xi − xOP )2 + (yi − yOP )2 (14)

κ =
β2∑n

i=1 disti
(15)

λ =
δ

n
(16)

If κ, the estimate of the percent coverage of P , is greater than or equal to λ, a

measure of the required coverage, then P is covered at a level greater than or equal

to δ and the OP is considered a valid point. If κ < λ then the OP is not valid and

P must be divided into sub-polygons using the method described in Section ??.

3.6 Pseudocode

3.6.1 MOPAD1 for Full Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2

M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj
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OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate α)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2

αj = maxi=1,...,n d
j
i

MDV j = index of MDV

(Test for coverage)

IF αj ≤ β: (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE (If Pj is not covered)

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
An+1 and An+2 are the sub-polygons formed by cutting Pj vertically through the OP

ELSE

An+1 and An+2 are the sub-polygons formed by cutting Pj horizontally through the OP

j = j + 1

END

3.6.2 MOPAD2 for Full Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2
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M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj

OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate α)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2

αj = maxi=1,...,n d
j
i

MDV j = index of MDV

(Test for coverage)

IF αj ≤ β: (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
IF |xjdist| ≥ 2β and |xjdist| ≤ 4β

Pn+1, Pn+2 and Pn+3 are the sub-polygons formed by cutting Pj

in thirds vertically

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

vertically through the OP

ELSE

IF |yjdist| ≥ 2β and |yjdist| ≤ 4β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

in thirds horizontally

ELSE

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

horizontally through the OP
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j = j + 1

END

3.6.3 MOPAD3 for Full Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2

M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj

OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate α)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2

αj = maxi=1,...,n d
j
i

MDV j = index of MDV

(Test for coverage)

IF αj ≤ β: (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
IF |xjdist| ≥ 1.5β and |xjdist| ≤ 2.5β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj
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in thirds vertically

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

vertically through the OP

ELSE

IF |yjdist| ≥ 1.5β and |yjdist| ≤ 2.5β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

in thirds horizontally

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

horizontally through the OP

j = j + 1

END

3.6.4 MOPAD1 for Partial Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2

M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj

OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate λandκ)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2

κj = β2∑n
i=1 d

j
i

λ = δ
n
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MDV j = index of MDV

(Test for coverage)

IF κj ≥ λ : (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
Pj+1 and Pj+2 are the sub-polygons formed by cutting Pj vertically through the OP

ELSE

Pj+1 and Pj+2 are the sub-polygons formed by cutting Pj horizontally through the OP

j = j + 1

END

3.6.5 MOPAD2 for Partial Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2

M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj

OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate λandκ)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2
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κj = β2∑n
i=1 d

j
i

λ = δ
n

MDV j = index of MDV

(Test for coverage)

IF κj ≥ λ : (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
IF |xjdist| ≥ 2β and |xjdist| ≤ 4β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

vertically through the OP

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

in half vertically

ELSE

IF |yjdist| ≥ 2β and |yjdist| ≤ 4β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

in thirds horizontally

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

horizontally through the OP

j = j + 1

END
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3.6.6 MOPAD3 for Partial Coverage.

A{1} = P

n = size{A}
j = 0

WHILE j ≤ n : (while there are polygons or sub-polygons remaining that are not covered)

(Calculate the OP)

‖Ej
i ‖ =

√
(xji − xji+1)

2 + (yji − yji+1)
2 for i = 1, ..., (n− 1)

‖Ej
n‖ =

√
(xjn − xj1)2 + (yjn − yj1)2

M j
i = coordinates of midpoint of ith edge, Ej

i , of polygon Pj

OPj =
∑n

i=1 ‖Ej
i ‖M j

i /
∑n

i=1 ‖Ej
i ‖

(Calculate λandκ)

dji =
√

(xji − xjOP )2 + (yji − yjOP )2

κj = β2∑n
i=1 d

j
i

λ = δ
n

MDV j = index of MDV

(Test for coverage)

IF κj ≥ λ : (if Pj is covered)

m = size(Z)

Zm+1 = OPj (Save OP in answer Set)

j = j + 1

ELSE

xjdist = |xj
MDV j − xjOP |

yjdist = |yj
MDV j − yjOP |

IF |xjdist| ≥ |yjdist|
IF |xjdist| ≥ 1.5β and |xjdist| ≤ 2.5β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

in thirds vertically

ELSE
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Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

vertically through the OP

ELSE

IF |yjdist| ≥ 1.5β and |yjdist| ≤ 2.5β

Pj+1, Pj+2 and Pj+3 are the sub-polygons formed by cutting Pj

in thirds horizontally

ELSE

Pj+1, Pj+2 are the sub-polygons formed by cutting Pj

horizontally through the OP

j = j + 1

END

3.7 Adjusting for Violated Assumptions

The assumptions of a convex polygonal AOS in the positive x, y quadrant may

not be applicable to every problem. The AOS can easily be adjusted to account

for violated assumptions and allow for the use of the MOPAD methodology. If P

is not a convex polygon, the convex hull of P , P ∗, should be used as an input to

the MOPAD method and any guards that cover regions of P ∗ that were not part of

P should be manually removed from the solution. If P is not in the positive x, y

quadrant, the entire region of P should be shifted to the positive x, y quadrant by

adding a constant to each vertex. If the original AOS is not a polygon but instead

some other shape, such as a circle, the original shape should be inscribed inside a

polygon, P ∗. The MOPAD method can then be run on P ∗ and all guards covering

a region of P ∗ not originally included as part of the AOS can be manually removed

from the solution.
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3.8 Proof of Coverage Given Coverage of Sub-polygons

It can be proven that if each sub-polygon, Pi is covered at level δi ≥ δ then

the entire polygon will be covered at a level greater than or equal to δ. Let COPi
be

the circle centered at OPi with radius β. Let δ∗ be the coverage level of the entire

polygon P , AP be the area of polygon P , APi
be the area of sub-polygon Pi, ASi

be the area of the region described by Si, and AOPi
be the area of COPi

. Then let

AOPi∩Pi
be the area contained in Pi that is covered by OPi. This proof is applicable

to all levels of coverage, 0 ≤ δ∗ ≤ 100 percent.

Let set Si =
⋃
j 6=i

[COPi
∩ (Pj \ COPj

)] ∀i = 1, ..., n

δ∗ =

∑n
i=1AOPi∩Pi∑n
i=1APi

+
n∑
i=1

ASi

δ∗ =

∑n
i=1 δiAPi∑n
i=1APi

+
n∑
i=1

ASi

δ∗ =
δ1AP1 + δ2AP2 + ...+ δnAPn∑n

i=1APi

+
n∑
i=1

ASi

δ∗ ≥ δAP1 + δAP2 + ...+ δAPn∑n
i=1APi

+
n∑
i=1

ASi
since δi ≥ δ ∀i = 1, ..., n

δ∗ ≥ δ
∑n

i=1APi∑n
i=1APi

+
n∑
i=1

ASi

δ∗ ≥ δ +
n∑
i=1

ASi

δ∗ ≥ δ

3.9 Determining the Relationship between κ and λ

Let the inner circle in Figure ?? represent the circle of visibility of a guard at

the center of the circle with range β1. Let the area over which coverage is desired be

the larger circle, with radius r1. The percent coverage, δ1, provided by the guard is
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Figure 8 Setting a Bound on λ

given by δ1 =
π∗β2

1

π∗r21
=

β2
1

r21
. To insure that the area is covered at a level at least the

desired percent coverage, δ, δ1 must be greater than or equal to δ. In other words,

β2
1

r21
≥ δ.

Any convex polygon can be placed inside the outer circle with the OP in the

center of the smaller circle and ri equal to the distance between the OP and each

vertex. The area of this polygon will be smaller than the area of the outer circle

regardless of the number of vertices, n, in the polygon. Therefore let δ be the

bound on the ratio of β2 and the sum of the distances of each vertex from the OP

(See Equation (??)). This relationship can be proven for a circle and as shown is

expected to extend to an inscribed polygon. Further testing (see Chapter 4) showed

that the bound needed to be tightened and results were more successful by using the

required relationship shown in Equation (??).

β2∑n
i=1(ri)

≥ δ (17)

β2∑n
i=1(ri)

≥ δ

n
(18)
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3.10 Conclusion

The MOPAD methodology developed in this chapter provides a method that

quickly determines a small set of limited visibility guards capable of covering a

polygonal region at a specified level of coverage less than or equal to 100 percent.

The MOPAD method assumes a convex polygonal AOS contained in the positive

x, y quadrant and 360 degree visibility guards with visibility range of β. There

are available options for handling instances where these assumptions are validated.

The MOPAD method improves upon the methodology presented by Kazazakis and

Argyros [?] by using a different cut-line motivated by methods developed by Stoyan

and Patsuk [?].
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4. Analysis and Results

4.1 Overview

Current literature is lacking not only in available methods to solve the NORTH-

COM problem but also in numerical results of these methods. In this chapter, the

MOPAD method presented in chapter 3 is analyzed. The method is compared to

Kazazakis and Argyros’ method [?] and Stoyan and Patsuk’s method [?] using ex-

amples presented in both papers. Computational results and computational time to

solve are discussed. A performance prediction for the MOPAD method is made with

respect to a lower bound. Empirical results are used to show the MOPAD method

for partial coverage will provide a coverage level at least as high as requested. The

NORTHCOM instance of the problem is solved for CONUS and 25 cities of interest

to the sponsor.

4.2 Kazazakis and Argyros’ Method

4.2.1 Verification and Validation. In Kazazakis and Argyros’ paper, the

number of guards required to cover a 1081 by 776 rectangle are shown with respect

to the visibility range of the guards [?]. These results are shown in Figure ??(a).

The results of implementing Kazazakis and Argyros’ methodology as presented in

Chapter 2 in Matlab are shown in Figure ??(b). It can be seen from these graphs that

the methodology as implemented by Kazazakis and Argyros and the methodology

as implemented by the author of this thesis present a similar trend in the required

number of guards. While the exact numerical results are not presented by Kazazakis

and Argyros, the results of implementation of Kazazakis and Argyros’ method using

Matlab appear to be at worst within around 20 percent of the values presented in

Kazazakis and Argyros’ paper [?]. It is possible that this difference is a result of

different implementations. For example, it is possible to have a polygon or sub-

polygon that has a tie for which vertex is the MDV. This thesis arbitrarily breaks
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that tie by using the first vertex as the MDV. It is possible that Kazazakis and

Argyros broke these ties using some other method and this may result in a slight

variation to the results. For the purpose of the analysis presented in this paper

the results referred to as Kazazakis and Argyros’ method are produced using the

implementation of Kazazakis and Argyros’ method as presented in Chapter 2 and

implemented in Matlab by the author of this thesis.

(a) Kazazakis and Argyros’ Published
Results [?]

(b) Author’s Implementation of Kaza-
zakis and Argyros’ Method

Figure 9 Number of Guards as a Function of Visibility Range

4.2.2 Comparison to Stoyan and Patsuk. In the article “Covering a Com-

pact Polygonal Set by Identical Circles”, Stoyan and Putsuk present several numer-

ical examples using their proposed methodology [?]. Given a 100 by 100 square and

a given desired number of guards to cover that square, Stoyan and Patsuk find the

minimum visibility range required for the guards to completely cover the square [?].

Using the same square and visibility range they determined as minimal for inputs to

the Kazazakis and Argyros methodology, the number of guards required to cover the

square are shown in column “K and A” in Apendix ??. These results are also shown

graphically in Figure ??. While Stoyan and Patsuk were answering a different ques-

tion, specifically what is the minimal visibility range required to achieve coverage

with the given number of guards, these results show that on average Kazazakis and

Argyros required 170 percent more guards with the same visibility range to cover

the square than Stoyan and Patsuk.
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Figure 10 Stoyan and Patsuk’s Results [?] vs Kazazakis and Argyros’ Results for
100 by 100 square

4.3 Analysis of MOPAD for Full Coverage

4.3.1 Computational Results. The results of the MOPAD methodology

for full coverage on the example provided by Kazazakis and Argyros (1081 by 776

square) are shown against the implementation of Kazazakis and Argyros’ method

in Figure ?? and Appendix ??. As shown, the MOPAD methodology consistently

requires fewer guards for coverage and therefore performs better than Kazazakis and

Argyros’ method. The MOPAD results for the example provided by Stoyan and

Patsuk (100 by 100 square) are shown against Stoyan and Patsuk and the imple-

mentation of Kazazakis and Argyros’ results in Figure ?? and Appendix ??. The

MOPAD results show consistently more minimal results than Kazazakis and Argy-

ros’ method although still overestimate the required number of guards compared

to Stoyan and Patsuk. Specifically, while the Kazazakis and Argyros’ method re-

quires an average of 170 percent more guards than Stoyan and Patsuk, the MOPAD

method requires an average of 68 percent more guards than Stoyan and Patsuk. The
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MOPAD methodology appears to be less sensitive to small changes in radius than

Stoyan and Patsuk’s results, producing a stair-step style pattern.

Figure 11 Number of Guards as a Function to Visibility Range: MOPAD vs Kaza-
zakis

Figure 12 Stoyan’s Results [?] vs MOPAD for 100 by 100 square

249 additional combinations of convex polygons and β were tested and the re-

sults of the MOPAD methodology and implemented Kazazakis and Argyros method-

ology on each combination are shown in Appendix ??, ??, ??, and ??. These test

cases combined with the cases discussed in Kazazakis and Argyros’ and Stoyan and
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Patsuk’s papers produce 312 separate combinations of P and β. The results of these

tests showed that in some instances where 1 or 2 guards are required to cover the

polygon, the MOPAD method and Kazazakis and Argyros method produced the

same optimal results. In all other instances requiring a larger number of guards

(> 2), the MOPAD method produced results ranging between 6.25 percent and

57.89 percent decrease in the required number of guards as compared to Kazazakis

and Argyros. Of these results 69.55 percent produced greater than or equal to a 20

percent decrease and 84.29 percent produced a greater than 10 percent decrease.

Stoyan and Patsuk also presented numerical results for a non-convex polygon

with holes. Stoyan and Patsuk provide the minimal visibility range required to

cover the region with 30 and 40 guards [?]. The 30 guard covering with β equal

to 16.617665 is shown in Figure ?? [?]. The MOPAD method requires an input

of a convex polygon with no holes. In order to apply the MOPAD method to the

shape provided by Stoyan, the holes were removed from the figure and the convex

hull of the polygon was used as an input (Figure ??). The polygon was shifted into

the positive quadrant of the x, y plane. After the results of the MOPAD method

were obtained using the convex hull as the input polygon, any guards in parts of

the polygon that were not part of the original shape were removed. This process

was done manually and required some movement of the guards to insure that any

gaps caused by the removal of guards were covered. With the given visibility range,

the MOPAD method with manual removal of unnecessary guards to compensate for

the non convex input resulted in 33 guards as compared to Stoyan and Patsuk’s 30

(Figure ??), and 44 guards as compared to Stoyan and Patsuk’s 40 (Figure ??). The

higher results produced by the MOPAD method may be a result of how unnecessary

guards were removed. Stoyan and Patsuk’s method allows for non-convex polygons

with holes and therefore these features are accounted for with the methodology [?].

MOPAD on the other hand does not account for any holes in the polygon. This could
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result in less efficient placement of some guards around the holes or non-convex edges

of P .

Figure 13 Stoyan’s Covering of Region with 30 guards [?]
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Figure 14 Convex Hull of Stoyan’s Example
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Figure 15 MOPAD Covering of Region with 33 guards

40



Figure 16 MOPAD Covering of Region with 44 guards
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4.3.2 Computational Time Results. When providing analysis of large in-

stances of the problem, such as the NORTHCOM instance, computation time is an

important factor in the choice of methodology. The CPU time required to solve each

of the 312 instances discussed previously in this section using the implementation of

Kazazakis and Argyros’ method and the MOPAD method were compared. Figure ??

shows the CPU time required to solve the example presented by Stoyan and Patsuk

using Kazazakis and Argyros’ method and the MOPAD method. These results are

also shown in Appendix ??, ??, ??, ??, ??, and ??. In all instances the MOPAD

method was at least as fast as the Kazazakis and Argyros method. Over 96 percent

of the test cases produced at least a 50 percent decrease in CPU time required to

solve the instance and over 63 percent produced at least 80 percent decrease in time.

These results show that the implementation of the MOPAD method described in

chapter 3 provides results consistently faster than the implementation of Kazazakis

and Argyros method described in chapter 2. These methods were implemented in

MATLAB R2009B on a HP Pavilion dv9500 Notebook PC.

Figure 17 CPU Time required to Solve 100 by 100 Square
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4.3.3 Bounding Results. Given a polygon, P , the area of the polygon AP

can be calculated using relatively simple geometry. The area of a circle with radius

β is given by AOP = πβ2. A lower bound for the number of guards required to cover

the polygon is given by ceiling(ω = AP

AOP
). It is not possible to attain a coverage of

P with less than ω guards because the area of the union of the circles around each

guard must be at least the area of P . While it is possible for the bound to be optimal

in some instances where only one guard is required, this bound will not necessarily

be the optimal number. This bound is developed assuming the circles fit together

perfectly without covering any area with more than one circle. This is not realistic

in a scenario that requires more than one guard because the circles of detection do

not fit together perfectly like a puzzle. Consequently ω provides a lower bound that

is no worse than the optimal solution but not necessarily optimal.

900 randomly generated polygons were run through the MOPAD methodology

using 900 randomly generated β values. These polygons were generated using a

MATLAB code developed by Roger Stafford to generate random convex polygons

given a number of vertices [?]. The number of vertices range between 3 and 20 and

the lower bound ranged between 1 and 19,535. These runs resulted in an average

solution of 2.6994ω circles required to cover the polygon. The worst performing

scenarios showed a solution of 8ω. These worst case scenarios occurred with a small

number of vertices (3) and elongated shapes. (For an example see Figure ??). In

these scenarios the bound is farther from optimal because P has a small area but

the elongated shape requires a larger number of circles for full coverage. The specific

ω values and number of guards required by MOPAD can be seen in Appendix ??.

Based on these results a 99 percent one-sided prediction interval can be built

as a measure of MOPAD performance. The 900 independent runs had an average

result, x, of 2.726ω and a standard deviation, s, of .693. A one sided upper prediction

interval can be built using equation ?? [?]. Based on these results, with 99 percent

confidence, the MOPAD method will produce results within 4.34 times ω.
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Figure 18 Example of Scenario Resulting in 8ω

x+ tαs
√

1 + 1/n (19)

4.4 Analysis of MOPAD for Partial Coverage

4.4.1 Simple Test Case. P1 = [0, 0; 2, 0; 2, 2; 0, 2] with β = 1. One guard

should result in δi = π∗12

2∗2 ∗ 100 = 78.53 percent coverage (See Figure ??(a). Two

circles centered at (0.5,1) and (1.5,1) produces coverage of 95.65 percent for each

sub-polygon and 95.65 percent for the original polygon (See Figure ??(b)). The

MOPAD method for full coverage produced a result of 4 circles required (Shown in

Figure ?? (c)). It can be seen that while the MOPAD for partial coverage produces

results with a percentage coverage higher than the requested δ, the number of guards

required is reduced as δ is reduced.
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(a) 78.53 Percent Coverage (b) 95.65 Percent Coverage (c) 100 Percent Coverage

Figure 19 Partial Coverage Test Scenario 1

Figure ??(a) shows the MOPAD method for partial coverage produced a per-

cent coverage greater than or equal to the requested percent coverage in every case.

The number of guards required is reduced by reducing the percent coverage required

as shown in Figure ??(b).

(a) Actual Percent Coverage vs δ (b) Guards Required for Partial Coverage vs Full Coverage

Figure 20 Partial Coverage Test Scenario 1

4.4.2 Results for Stoyan Test Case. The MOPAD method for partial

coverage was applied to the 100 by 100 square provided in Stoyan and Patsuk’s

paper. The results are shown in Figure ??. It can be seen in these results that a

45



reduced δ results in a reduced number of guards in most cases. Because the actual

percent coverage is not always tight to δ in some instances a δ of 90 percent resulted

in the same number of guards as full coverage.

Figure 21 Partial Coverage Results for 100 by 100 Square

4.5 NORTHCOM Instance

Raw data for the locations of the border of CONUS was not readily available.

The sponsor suggested that the data be found through the use of GoogleEarth. How-

ever, this method could involve significant error. Instead, data was obtained from

Steve West [?]. West used the state boundary data set from the U.S. Census Bureau

and eliminated duplicate and unnecessary data points [?]. West then converted the

latitude and longitude values to an x, y coordinate system and stored the data in

an Excel file [?]. The data provided by West is the data used for the NORTHCOM

instance of the problem.

Figure ??(a) shows the shape of CONUS used for the purpose of this research.

Because this polygon is not convex, the input polygon was split into 3 separate

polygons and each sub-polygon was made convex (Figure ??(b)). The MOPAD

methodology was then run on each of the sub-polygons with a visibility range of 40
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NM. Any guards that provided coverage of an area that is not part of the original

CONUS were removed. This produced a requirement for 1,448 MPAR units to

provide full coverage (Figure ??). Additionally, the MOPAD method was run using

the same inputs for requirements of 90, 80, and 70 percent coverage (Figure ??, ??,

and ?? respectively). A reduction of 30 percent coverage resulted in a reduction of

over 50 percent for the number of guards required.

(a) CONUS (b) CONUS Divided into Convex Poly-
gons

Figure 22 CONUS Input to MOPAD Method
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Figure 23 Full Coverage of the United States Using 1448 MPAR

48



Figure 24 90 Percent Coverage of the United States Using 1282 MPAR
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Figure 25 80 Percent Coverage of the United States Using 920 MPAR
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Figure 26 70 Percent Coverage of the United States Using 712 MPAR
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Due to budgetary restraints it is possible that full coverage of CONUS may

not be possible. However, there are several cities over which having full coverage

is necessary. Figure ??(a) shows these cities and the 200 NM radius around the

cities over which coverage is desired. Figure ??(c) shows the polygonal input used

as input for the MOPAD method. After results for the input shown in Figure ??(c)

were obtained, any guards outside of the area shown in Figure ??(a) were removed.

The MOPAD methodology was applied to these areas. These results are shown in

Figure ??. Figures ??, ??, ?? show 90, 80, and 70 percent coverings of CONUS

respectively with full coverage of the 25 cities of interest.

(a) Key Cities AOS (b) Key Cities AOS inscribed in MOPAD in-
put

(c) Key Cities MOPAD input

Figure 27 Key Cities
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Figure 28 Covering of 25 Cities of Interest Using 710 MPAR
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Figure 29 90 Percent Covering of CONUS with Full Coverage of 25 Cities Using
1373 MPAR
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Figure 30 80 Percent Covering of CONUS with Full Coverage of 25 Cities Using
1184 MPAR
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Figure 31 70 Percent Covering of CONUS with Full Coverage of 25 Cities Using
1074 MPAR
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4.6 Conclusions

The MOPAD methodology developed in Chapter 3 quickly provides a small

set of guards required to cover the interior and exterior of a convex polygon at a

percent coverage less than or equal to 100 percent. The MOPAD method consistently

provides a smaller number of required guards in a shorter amount of time than the

implemented Kazazakis and Argyros method discussed in Chapter 2. The MOPAD

method is expected to provide a set of guards within 4.34 times the lower bound in

99 percent of instances.
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5. Conclusions

5.1 Conclusions

Current literature does not provide a method for quickly determining a small

set of limited visbility guards required to cover the interior and exterior of a con-

tinuous polygonal region at a level less than or equal to 100 percent. The MOPAD

method developed in this thesis quickly provides a good solution to this problem.

The MOPAD method consistently requires a smaller number of guards required to

cover a region and requires less computational time to solve than the method pre-

sented by Kazazakis and Argyros. Additionally, the MOPAD method is expected to

require within 4.34 times the lower bound guards 99 percent of the time.

The application of the MOPAD method to NORTHCOM’s problem provides a

required number of MPAR units needed to cover CONUS and 25 key cities of interest.

The solution to this problem, could save the United States significant amounts of

money during the replacement process and improve surveillance capabilities of the

future NAS system. In order to cover CONUS at a level of 100 percent, 1,448 MPAR

units are required. This cost could be prohibitively expensive. A reduction to the

number of required MPAR units of 25.8 percent (1,074 MPAR required) can be

achieved by providing 100 percent coverage of the 25 cities of interest provided by

NORTHCOM and 70 percent coverage of the rest of CONUS.

5.2 Possible Applications

The MOPAD method presented in Chapter 3 is applicable to many additional

situations. For example, the method could be applied to determine the location for

surveillance resources in forward operating areas where the number and location of

these units must be determined quickly and the shape of the region may change

often. This method could also be used to determine the location of sensors, lights,

mines, microphones, or cameras in areas where trespassing is forbidden. The method
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is robust enough to provide a good solution to most situations where the area of

coverage can be modeled as a polygon and the resource can be modeled as a circle

of constant radius.

5.3 Future Work

5.3.1 NORTHCOM Instance. For the purpose of this research, the sponsor

requested that terrain features not be considered. Features of the land area such as

ownership, buildings, availability, etc were not considered. These are important fac-

tors in determining the final location of the MPAR units and should be included for

future analysis. MPAR units are considered extremely reliable because the technol-

ogy is capable of functioning even when the unit is degraded. The sponsor requested

that 100 percent reliability of MPAR units be assumed. In practice each MPAR may

not be operational 100 percent of the time due to failure or maintenance. Future

research should be done to consider the impact of reduced reliability and determine

if redundant MPAR units are required.

5.3.2 Methodology. Additional analysis can be conducted to determine a

better relationship between λ and κ that will result in a coverage level closer to the

requested level. The method could be expanded to handle non-convex polygons,

polygons not contained in the positive x, y quadrant, polygons with holes, or shapes

other than polygons such as circular regions.

The results of the MOPAD method show redundant coverage in some instances.

Further analysis related to how to reduce these redundancies could improve perfor-

mance of the MOPAD method. Another phase in the method could be implemented

to check the current solution for redundancies and remove them. Kazazakis and

Argyros discuss the benefits of using the median point for the OP [?]. Stoyan and

Patsuk mention the importance of OP selection but do not describe the specific
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method used in their paper [?]. Further analysis of OP selection could be conducted

in an effort to improve the MOPAD method and reduce redundant guards.

While the MOPAD method assumes a continuous region, a discrete method

may be capable of solving the NORTHCOM and other instances of the problem.

Comparing the computation time to solve and numerical results of the MOPAD

method to available discrete methods would provide additional measures of the good-

ness of solution and speed of the method.
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Appendix A. Test Cases

A.1 Overview

The following tables and figures show results for test cases used in the analysis

presented in Chapter 4. The columns labeled “S and P” represent the results from

Stoyan and Patsuk. The columns labeled “K and A” are the results from the authors

Matlab implementation of Kazazakis and Argyros method as presented in Chapter

2. MOPAD1, MOPAD2, and MOPAD3 columns are the data for the respective

implementation of the MOPAD method and the MOPAD column is the most minimal

result of the three implementations. The columns labeled ω show the lower bound

value, ω, for the instance as calculated in Chapter 4 and the column MOPADω

shows how many times greater than ω the MOPAD results were. All data, except

the results of Stoyan and Patsuk, were achieved by implementing the methodologies

in Matlab R2009b on a HP Pavilion dv9500 Notebook PC.

A.2 100 by 100 Square Presented in Stoyan and Patsuk Paper

Figure 32 100 by 100 Square Presented by Stoyan and Patsuk
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Required Guards

β S and P [?] K and A MOPAD1 MOPAD2 MOPAD3 MOPAD

12.04 31 78 64 52 64 52

11.84 32 82 64 52 68 52

11.58 33 88 64 84 68 64

11.44 34 88 64 84 72 64

11.27 35 90 64 84 72 64

11.02 36 92 64 100 84 64

10.92 37 92 64 100 92 64

10.80 38 96 64 100 100 64

10.63 39 106 64 100 100 64

10.55 40 112 64 100 100 64

10.45 41 112 64 100 100 64

10.18 42 114 64 80 96 64

10.14 43 116 64 80 96 64

10.00 44 116 64 80 96 64

9.89 45 118 64 80 96 64

9.72 46 126 64 80 96 64

9.63 47 126 64 112 112 64

9.53 48 130 64 128 120 64

9.37 49 134 64 128 120 64

9.31 50 134 64 144 128 64

9.24 51 138 64 144 128 64

9.12 52 144 64 144 136 64

9.07 53 146 64 144 136 64

9.01 54 148 64 144 144 64

8.92 55 152 64 144 144 64
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Required Guards

β S and P [?] K and A MOPAD1 MOPAD2 MOPAD3 MOPAD

8.74 56 154 128 144 144 116

8.68 57 154 128 144 144 116

8.62 58 158 128 116 136 116

8.54 59 164 128 116 136 116

8.43 60 168 128 116 136 116

8.42 61 170 128 116 136 116

8.35 62 174 128 116 136 116

8.25 63 176 128 132 144 128

8.15 64 176 128 132 144 128

8.11 65 182 128 132 144 128

8.06 66 182 128 164 144 128

8.00 67 182 128 180 172 128

7.95 68 186 128 180 172 128

7.90 69 190 128 180 172 128

7.84 70 192 128 180 172 128

7.77 71 196 128 196 180 128

7.66 72 200 128 196 180 128

7.21 81 218 128 176 192 128

6.48 100 272 256 256 240 240
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Required Guards

Radius S and P [?] K and A MOPAD ω MOPADω

12.04 31 78 52 22 2.36

11.84 32 82 52 23 2.26

11.58 33 88 64 24 2.67

11.44 34 88 64 25 2.56

11.27 35 90 64 26 2.46

11.02 36 92 64 27 2.37

10.92 37 92 64 27 2.37

10.80 38 96 64 28 2.29

10.63 39 106 64 29 2.21

10.55 40 112 64 29 2.21

10.45 41 112 64 30 2.13

10.18 42 114 64 31 2.06

10.14 43 116 64 31 2.06

10.00 44 116 64 32 2.00

9.89 45 118 64 33 1.94

9.72 46 126 64 34 1.88

9.63 47 126 64 35 1.83

9.53 48 130 64 36 1.78

9.37 49 134 64 37 1.73

9.31 50 134 64 37 1.73

9.24 51 138 64 38 1.68

9.12 52 144 64 39 1.64

9.07 53 146 64 39 1.64

9.01 54 148 64 40 1.60

8.92 55 152 64 40 1.60
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Required Guards

Radius S and P [?] K and A MOPAD ω MOPADω

8.74 56 154 116 42 2.76

8.68 57 154 116 43 2.70

8.62 58 158 116 43 2.70

8.54 59 164 116 44 2.64

8.43 60 168 116 45 2.58

8.42 61 170 116 45 2.58

8.35 62 174 116 46 2.52

8.25 63 176 128 47 2.72

8.15 64 176 128 48 2.67

8.11 65 182 128 49 2.61

8.06 66 182 128 49 2.61

8.00 67 182 128 50 2.56

7.95 68 186 128 51 2.51

7.90 69 190 128 52 2.46

7.84 70 192 128 52 2.46

7.77 71 196 128 53 2.42

7.66 72 200 128 55 2.33

7.21 81 218 128 62 2.06

6.48 100 272 240 76 3.16
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Computational Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

12.04 0.905 0.265 0.218 0.265

11.84 0.780 0.234 0.218 0.234

11.58 0.811 0.234 0.296 0.281

11.44 0.827 0.234 0.296 0.250

11.27 0.858 0.218 0.281 0.265

11.02 0.858 0.250 0.374 0.312

10.92 0.905 0.218 0.359 0.328

10.80 0.952 0.218 0.359 0.343

10.63 0.920 0.234 0.374 0.374

10.55 0.967 0.234 0.374 0.374

10.45 0.983 0.234 0.343 0.374

10.18 1.045 0.218 0.281 0.312

10.14 1.014 0.218 0.281 0.359

10.00 1.045 0.234 0.296 0.374

9.89 1.108 0.218 0.296 0.343

9.72 1.154 0.203 0.281 0.359

9.63 1.108 0.234 0.390 0.390

9.53 1.154 0.234 0.421 0.437

9.37 1.201 0.234 0.468 0.437

9.31 1.217 0.234 0.515 0.437

9.24 1.217 0.234 0.546 0.468

9.12 1.295 0.234 0.499 0.499

9.07 1.279 0.234 0.515 0.499

9.01 1.248 0.234 0.515 0.499

8.92 1.295 0.234 0.499 0.499
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Computational Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

8.74 1.342 0.437 0.515 0.515

8.68 1.420 0.468 0.515 0.484

8.62 1.357 0.437 0.421 0.499

8.54 1.342 0.468 0.437 0.484

8.43 1.404 0.437 0.406 0.468

8.42 1.529 0.437 0.406 0.515

8.35 1.544 0.452 0.421 0.468

8.25 1.576 0.452 0.452 0.546

8.15 1.669 0.468 0.468 0.530

8.11 1.607 0.437 0.452 0.515

8.06 1.654 0.437 0.608 0.499

8.00 1.654 0.452 0.608 0.624

7.95 1.747 0.452 0.655 0.624

7.90 1.872 0.468 0.624 0.608

7.84 1.685 0.421 0.655 0.640

7.77 1.841 0.452 0.718 0.671

7.66 1.888 0.452 0.718 0.671

7.21 2.012 0.468 0.640 0.671

6.48 2.527 0.889 0.936 0.858

67



Figure 33 1081 by 776 Square Presented by Kazazakis and Argyros

A.3 1081 by 776 Square Presented by Kazazakis and Argyros

Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

10 9732 8192 7680 8704 7680 2671 2.88

20 2452 2048 1920 2176 1920 668 2.87

30 1104 512 1120 992 512 297 1.72

40 600 512 480 544 480 167 2.87

80 158 128 120 136 120 42 2.86

120 70 32 70 62 32 19 1.68

160 38 32 30 34 30 11 2.73

200 26 16 24 24 16 7 2.29

240 16 8 10 14 8 5 1.60

280 12 8 8 8 8 4 2.00

320 10 8 8 6 6 3 2.00
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Computational Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

10 121.182 46.161 42.651 51.371

20 24.196 8.143 7.722 9.048

30 10.312 1.841 4.290 3.822

40 5.881 1.841 1.778 2.044

80 1.373 0.468 0.437 0.484

120 0.702 0.109 0.281 0.250

160 0.359 0.109 0.094 0.125

200 0.234 0.047 0.109 0.094

240 0.203 0.047 0.062 0.062

280 0.109 0.047 0.031 0.047

320 0.125 0.047 0.031 0.047

A.4 P=[100,0;400,0;500,100;600,200;200,300;100,300;0,200;0,100]

Figure 34 P=[100,0;400,0;500,100;600,200;200,300;100,300;0,200;0,100]
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

1 113824 109037 111112 109037 44564 2.44

2 28555 26573 27038 26573 11141 2.38

3 12013 11763 12447 11763 4952 2.37

4 10355 7189 7537 8362 7189 2786 2.58

5 6580 3919 5115 5286 3919 1783 2.19

6 4549 3048 3510 3746 3048 1238 2.46

7 3402 1976 2872 2718 1976 910 2.17

8 2582 1824 1884 2087 1824 697 2.61

9 2052 1404 1513 1570 1404 551 2.54

10 1668 995 1304 1327 995 446 2.23

11 1362 952 1089 1109 952 369 2.57

12 1149 774 926 951 774 310 2.49

13 976 533 762 796 533 264 2.01

14 831 506 722 686 506 228 2.21

15 739 494 491 581 491 199 2.46

16 646 468 475 530 468 175 2.67

17 568 437 454 451 437 155 2.81

18 510 363 360 398 360 138 2.60

19 458 268 332 362 268 124 2.16

20 408 254 299 320 254 112 2.26

21 385 246 263 304 246 102 2.41

22 333 244 286 286 244 93 2.62

23 302 214 273 263 214 85 2.51

24 289 205 213 231 205 78 2.62

25 263 157 183 215 157 72 2.18
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

26 251 142 197 208 142 66 2.15

27 230 133 195 190 133 62 2.14

28 212 131 184 179 131 57 2.29

29 194 129 139 161 129 53 2.43

30 186 127 129 147 127 50 2.54

31 170 122 127 139 122 47 2.59

32 167 122 121 131 121 44 2.75

33 148 120 118 121 118 41 2.87

34 140 116 115 110 110 39 2.82

35 126 101 97 104 97 37 2.62

36 130 97 84 102 84 35 2.4

37 124 81 94 97 81 33 2.45

38 111 73 92 95 73 31 2.35

39 101 68 80 92 68 30 2.26

40 104 67 78 87 67 28 2.39

41 97 66 72 77 66 27 2.44

42 92 65 73 78 65 26 2.5

43 91 65 69 76 65 25 2.6

44 79 65 70 73 65 24 2.70

45 78 64 67 71 64 23 2.78

46 77 57 60 69 57 22 2.59

47 70 56 59 65 56 21 2.66

48 69 55 55 62 55 20 2.75

49 69 45 53 62 45 19 2.36

50 64 43 51 57 43 18 2.38
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

51 66 39 52 55 39 18 2.16

52 58 38 52 52 38 17 2.23

53 57 35 53 51 35 16 2.18

54 58 34 48 47 34 16 2.12

55 51 34 44 45 34 15 2.26

56 50 34 42 43 34 15 2.26

57 48 34 41 43 34 14 2.42

58 46 34 36 43 34 14 2.42

59 45 34 35 43 34 13 2.61

60 43 33 35 42 33 13 2.53

61 47 32 33 39 32 12 2.66

62 43 32 36 37 32 12 2.66

63 46 32 31 33 31 12 2.58

64 40 32 31 33 31 11 2.81

65 40 32 33 33 32 11 2.90

66 39 32 31 32 31 11 2.81

67 36 32 32 32 32 10 3.2

68 32 32 32 30 30 10 3

69 31 31 29 30 29 10 2.9

70 32 28 27 30 27 10 2.7

71 32 27 25 28 25 9 2.77

72 30 27 25 28 25 9 2.77

73 26 24 24 26 24 9 2.66

74 29 23 21 25 21 9 2.33

75 29 22 22 25 22 8 2.75
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

76 26 22 23 25 22 8 2.75

77 28 21 22 24 21 8 2.62

78 24 21 22 23 21 8 2.62

79 25 21 22 22 21 8 2.62

80 26 21 21 22 21 7 3

81 25 21 23 22 21 7 3

82 24 19 20 19 19 7 2.71

83 23 18 20 19 18 7 2.57

84 23 18 20 18 18 7 2.57

85 25 18 19 17 17 7 2.42

86 20 18 17 17 17 7 2.42

87 22 18 16 17 16 6 2.66

88 22 17 16 17 16 6 2.66

89 21 16 16 17 16 6 2.66

90 19 16 16 17 16 6 2.66

91 18 15 16 17 15 6 2.5

92 19 15 16 17 15 6 2.5

93 22 15 15 17 15 6 2.5

94 19 15 15 16 15 6 2.5

95 17 15 15 16 15 5 3

96 16 15 15 16 15 5 3

97 16 14 15 16 14 5 2.8

98 15 14 15 15 14 5 2.8

99 15 13 15 15 13 5 2.6

100 13 13 15 13 13 5 2.6
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

101 13 13 14 13 13 5 2.6

102 14 12 12 13 12 5 2.4

103 16 12 12 13 12 5 2.4

104 16 12 12 13 12 5 2.4

105 12 12 12 13 12 5 2.4

106 16 11 12 12 11 4 2.75

107 16 11 12 12 11 4 2.75

108 13 10 12 12 10 4 2.5

109 10 9 12 12 9 4 2.25

110 13 9 12 12 9 4 2.25

111 13 9 11 12 9 4 2.25

112 12 9 11 12 9 4 2.25

113 11 9 11 12 9 4 2.25

114 12 9 11 11 9 4 2.25

115 11 9 11 11 9 4 2.25

116 13 9 11 11 9 4 2.25

117 10 9 11 11 9 4 2.25

118 14 8 11 11 8 4 2

119 12 8 10 11 8 4 2

120 10 8 10 11 8 4 2

121 12 8 10 11 8 4 2

122 9 8 10 11 8 3 2.66

123 8 8 9 11 8 3 2.66

124 12 8 9 11 8 3 2.66

125 9 8 9 11 8 3 2.66

74



Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

126 11 8 9 9 8 3 2.66

127 12 8 9 9 8 3 2.66

128 8 8 9 9 8 3 2.66

129 9 8 9 9 8 3 2.66

130 12 8 9 9 8 3 2.66

131 12 8 9 8 8 3 2.66

132 8 8 9 8 8 3 2.66

133 9 8 9 8 8 3 2.66

134 8 8 9 8 8 3 2.66

135 8 8 9 8 8 3 2.66

136 9 8 9 8 8 3 2.66

137 9 8 9 8 8 3 2.66

138 8 8 9 7 7 3 2.33

139 8 8 9 6 6 3 2

140 9 8 9 6 6 3 2

141 8 8 9 6 6 3 2

142 8 8 9 6 6 3 2

143 8 8 9 6 6 3 2

144 8 8 9 6 6 3 2

145 8 8 9 6 6 3 2

146 9 8 9 6 6 3 2

147 7 8 8 6 6 3 2

148 7 8 8 6 6 3 2

149 9 8 7 6 6 3 2

150 8 8 6 6 6 2 3
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

151 7 8 6 6 6 2 3

152 7 8 5 6 5 2 2.5

153 7 8 5 6 5 2 2.5

154 7 8 5 6 5 2 2.5

155 7 8 5 6 5 2 2.5

156 6 8 5 6 5 2 2.5

157 6 8 5 6 5 2 2.5

158 6 7 5 6 5 2 2.5

159 6 6 5 6 5 2 2.5

160 7 6 5 6 5 2 2.5

161 6 6 5 6 5 2 2.5

162 6 6 6 6 6 2 3

163 5 5 5 6 5 2 2.5

164 6 5 5 5 5 2 2.5

165 8 5 5 5 5 2 2.5

166 5 4 4 5 4 2 2

167 6 4 4 5 4 2 2

168 7 4 4 5 4 2 2

169 5 4 4 5 4 2 2

170 4 4 4 5 4 2 2

171 5 4 4 5 4 2 2

172 7 4 4 5 4 2 2

173 6 4 4 5 4 2 2

174 4 4 4 5 4 2 2

175 4 4 4 5 4 2 2
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

176 4 4 4 5 4 2 2

177 4 4 4 5 4 2 2

178 4 4 4 5 4 2 2

179 4 4 4 5 4 2 2

180 4 4 4 5 4 2 2

181 4 4 4 5 4 2 2

182 4 4 4 4 4 2 2

183 6 4 4 3 3 2 1.5

184 5 4 4 3 3 2 1.5

185 4 4 4 3 3 2 1.5

186 5 4 4 3 3 2 1.5

187 4 4 4 3 3 2 1.5

188 4 4 4 3 3 2 1.5

189 4 4 4 3 3 2 1.5

190 5 4 4 3 3 2 1.5

191 4 3 3 3 3 2 1.5

192 4 3 3 3 3 2 1.5

193 4 3 3 3 3 2 1.5

194 4 3 3 3 3 2 1.5

195 4 3 3 3 3 2 1.5

196 4 3 3 3 3 2 1.5

197 4 3 3 3 3 2 1.5

198 4 3 3 3 3 2 1.5

199 4 3 3 3 3 2 1.5

200 4 3 3 3 3 2 1.5
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

4 116.673 39.109 42.276 48.906

5 67.720 17.862 25.210 26.364

6 44.398 13.182 15.772 17.223

7 32.448 8.003 12.480 11.747

8 24.149 7.238 7.535 8.658

9 18.892 5.476 6.037 6.334

10 15.179 3.744 5.101 5.257

11 12.308 3.572 4.290 4.306

12 10.358 2.886 3.526 3.666

13 8.642 1.919 2.855 3.011

14 7.441 1.856 2.730 2.605

15 6.536 1.763 1.778 2.168

16 5.678 1.700 1.747 1.997

17 5.023 1.607 1.669 1.669

18 4.508 1.310 1.326 1.451

19 4.087 0.952 1.232 1.357

20 3.619 0.920 1.076 1.170

21 3.432 0.905 0.967 1.123

22 2.995 0.858 1.045 1.061

23 2.683 0.780 0.967 0.952

24 2.558 0.718 0.749 0.858

25 2.356 0.577 0.686 0.796
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

26 2.246 0.484 0.702 0.780

27 1.997 0.499 0.702 0.686

28 1.872 0.484 0.655 0.655

29 1.716 0.452 0.499 0.593

30 1.622 0.452 0.484 0.515

31 1.544 0.421 0.437 0.515

32 1.482 0.468 0.437 0.484

33 1.326 0.437 0.437 0.421

34 1.248 0.406 0.421 0.406

35 1.139 0.374 0.374 0.374

36 1.139 0.328 0.281 0.374

37 1.092 0.312 0.359 0.374

38 0.998 0.234 0.343 0.343

39 0.889 0.250 0.312 0.359

40 0.936 0.234 0.281 0.359

41 0.858 0.250 0.281 0.281

42 0.796 0.281 0.265 0.281

43 0.811 0.218 0.250 0.296

44 0.702 0.250 0.250 0.265

45 0.718 0.203 0.265 0.250

46 0.702 0.218 0.218 0.265

47 0.655 0.218 0.218 0.265

48 0.608 0.218 0.187 0.218

49 0.608 0.156 0.218 0.234

50 0.577 0.156 0.203 0.203
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

51 0.577 0.140 0.203 0.218

52 0.515 0.125 0.187 0.203

53 0.530 0.140 0.187 0.187

54 0.562 0.140 0.172 0.172

55 0.484 0.109 0.187 0.156

56 0.468 0.140 0.140 0.156

57 0.452 0.140 0.172 0.187

58 0.437 0.125 0.125 0.156

59 0.406 0.125 0.140 0.156

60 0.421 0.109 0.156 0.156

61 0.421 0.125 0.109 0.140

62 0.374 0.140 0.156 0.140

63 0.421 0.109 0.109 0.109

64 0.359 0.109 0.109 0.140

65 0.374 0.109 0.109 0.125

66 0.390 0.109 0.140 0.094

67 0.328 0.140 0.109 0.140

68 0.312 0.109 0.109 0.125

69 0.296 0.125 0.109 0.109

70 0.281 0.125 0.094 0.109

71 0.296 0.109 0.109 0.125

72 0.265 0.125 0.109 0.094

73 0.265 0.078 0.109 0.109

74 0.265 0.094 0.062 0.109

75 0.265 0.109 0.094 0.109
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

76 0.265 0.078 0.109 0.109

77 0.250 0.094 0.078 0.109

78 0.250 0.094 0.078 0.078

79 0.234 0.094 0.078 0.094

80 0.234 0.094 0.094 0.094

81 0.250 0.078 0.094 0.109

82 0.234 0.062 0.094 0.047

83 0.234 0.094 0.078 0.078

84 0.234 0.062 0.094 0.062

85 0.234 0.047 0.062 0.078

86 0.203 0.062 0.078 0.078

87 0.218 0.062 0.078 0.078

88 0.234 0.062 0.078 0.078

89 0.187 0.047 0.047 0.078

90 0.203 0.078 0.047 0.078

91 0.172 0.078 0.078 0.062

92 0.203 0.062 0.078 0.062

93 0.203 0.078 0.062 0.062

94 0.172 0.078 0.078 0.078

95 0.156 0.047 0.078 0.047

96 0.172 0.078 0.047 0.078

97 0.140 0.047 0.047 0.078

98 0.172 0.047 0.078 0.078

99 0.140 0.062 0.062 0.062

100 0.125 0.062 0.047 0.047
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

101 0.125 0.062 0.078 0.047

102 0.125 0.062 0.047 0.047

103 0.172 0.062 0.047 0.062

104 0.172 0.047 0.031 0.047

105 0.125 0.047 0.062 0.031

106 0.172 0.031 0.062 0.062

107 0.172 0.062 0.062 0.078

108 0.140 0.031 0.062 0.047

109 0.109 0.047 0.062 0.031

110 0.140 0.047 0.047 0.062

111 0.140 0.047 0.031 0.062

112 0.140 0.047 0.062 0.062

113 0.094 0.062 0.062 0.062

114 0.109 0.031 0.031 0.062

115 0.125 0.016 0.062 0.031

116 0.125 0.031 0.047 0.062

117 0.109 0.047 0.031 0.062

118 0.156 0.047 0.062 0.031

119 0.109 0.047 0.062 0.031

120 0.125 0.047 0.016 0.062

121 0.140 0.047 0.062 0.047

122 0.094 0.047 0.031 0.031

123 0.078 0.047 0.031 0.062

124 0.109 0.031 0.062 0.031

125 0.109 0.031 0.031 0.062
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

126 0.109 0.031 0.031 0.047

127 0.109 0.047 0.031 0.062

128 0.078 0.047 0.047 0.031

129 0.109 0.047 0.047 0.031

130 0.125 0.047 0.031 0.031

131 0.109 0.047 0.031 0.047

132 0.094 0.031 0.031 0.047

133 0.109 0.031 0.047 0.047

134 0.078 0.016 0.047 0.047

135 0.094 0.047 0.062 0.047

136 0.109 0.047 0.031 0.047

137 0.109 0.047 0.031 0.047

138 0.078 0.047 0.031 0.047

139 0.078 0.047 0.047 0.047

140 0.078 0.031 0.047 0.016

141 0.094 0.031 0.047 0.047

142 0.109 0.016 0.062 0.047

143 0.078 0.047 0.031 0.016

144 0.078 0.031 0.031 0.047

145 0.078 0.047 0.031 0.016

146 0.094 0.047 0.047 0.047

147 0.094 0.047 0.047 0.031

148 0.062 0.047 0.047 0.016

149 0.109 0.047 0.047 0.047

150 0.094 0.047 0.016 0.016
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

151 0.094 0.031 0.016 0.047

152 0.062 0.031 0.047 0.016

153 0.094 0.031 0.016 0.031

154 0.062 0.031 0.031 0.016

155 0.094 0.031 0.016 0.047

156 0.062 0.031 0.016 0.016

157 0.062 0.031 0.031 0.047

158 0.109 0.016 0.016 0.016

159 0.078 0.047 0.016 0.047

160 0.062 0.016 0.031 0.016

161 0.078 0.047 0.031 0.047

162 0.078 0.016 0.047 0.016

163 0.047 0.031 0.016 0.047

164 0.078 0.062 0.031 0.016

165 0.078 0.031 0.047 0.016

166 0.047 0.031 0.016 0.031

167 0.062 0.031 0.016 0.016

168 0.047 0.031 0.016 0.031

169 0.047 0.031 0.016 0.031

170 0.047 0.031 0.016 0.047

171 0.047 0.031 0.016 0.016

172 0.062 0.031 0.000 0.031

173 0.078 0.031 0.016 0.016

174 0.031 0.031 0.000 0.047

175 0.062 0.031 0.047 0.016
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

176 0.031 0.031 0.016 0.016

177 0.062 0.031 0.016 0.031

178 0.031 0.031 0.016 0.047

179 0.062 0.031 0.016 0.016

180 0.031 0.031 0.016 0.016

181 0.031 0.031 0.016 0.031

182 0.062 0.031 0.016 0.031

183 0.078 0.031 0.016 0.031

184 0.047 0.031 0.016 0.031

185 0.031 0.031 0.016 0.031

186 0.062 0.031 0.016 0.000

187 0.062 0.016 0.016 0.000

188 0.031 0.016 0.016 0.031

189 0.062 0.016 0.016 0.000

190 0.047 0.016 0.016 0.031

191 0.047 0.016 0.000 0.031

192 0.031 0.016 0.031 0.016

193 0.047 0.000 0.016 0.000

194 0.047 0.031 0.016 0.031

195 0.031 0.016 0.000 0.031

196 0.047 0.016 0.016 0.016

197 0.047 0.000 0.016 0.000

198 0.031 0.031 0.000 0.031

199 0.062 0.031 0.016 0.031

200 0.031 0.016 0.016 0.016
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A.5 P=[10,0;20,0;30,10;30,20;20,30;10,30;0,20;0,10;10,0]

Figure 35 P=[10,0;20,0;30,10;30,20;20,30;10,30;0,20;0,10;10,0]
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

1 894 516 728 707 516 223 2.31

2 220 132 148 166 132 56 2.36

3 107 68 72 80 68 25 2.72

4 51 36 45 46 36 14 2.57

5 35 24 30 33 24 9 2.67

6 26 16 22 22 16 7 2.29

7 19 16 16 16 16 5 3.20

8 14 16 16 12 12 4 3.00

9 11 8 8 10 8 3 2.67

10 8 8 8 8 8 3 2.67

11 7 4 4 4 4 2 2.00

12 6 4 4 4 4 2 2.00

13 4 4 4 4 4 2 2.00

14 4 4 4 4 4 2 2.00

15 4 4 4 4 4 1 4.00

16 1 1 1 1 1 1 1.00

17 1 1 1 1 1 1 1.00

18 1 1 1 1 1 1 1.00

19 1 1 1 1 1 1 1.00

20 1 1 1 1 1 1 1.00
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

7.76885 1.887612 2.761218 2.667617

1.872012 0.452403 0.514803 0.624004

0.920406 0.249602 0.327602 0.296402

0.452403 0.140401 0.187201 0.187201

0.312002 0.093601 0.109201 0.124801

0.234002 0.0468 0.078 0.078

0.171601 0.078001 0.0468 0.0624

0.124801 0.078001 0.093601 0.0312

0.124801 0.0312 0.0156 0.0624

0.093601 0.0312 0.0468 0.0312

0.0624 0 0.0312 0.0156

0.078001 0.0312 0.0468 0.0156

0.0468 0.0312 0.0156 0.0156

0.0624 0.0312 0.0156 0

0.0312 0.0312 0.0156 0.0312

0.0312 0 0 0

0 0 0 0

0 0 0 0

0 0 0.0312 0.0156

0 0 0 0
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Figure 36 P=[10,0;40,0;50,10;60,20;20,30;10,30;0,20;0,10;10,0]

A.6 P=[10,0;40,0;50,10;60,20;20,30;10,30;0,20;0,10;10,0]

Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

1 1653 995 1304 1327 995 414 2.40

2 412 254 299 321 254 104 2.44

3 187 127 129 147 127 46 2.76

4 97 67 78 87 67 26 2.58

5 64 43 51 57 43 17 2.53

6 41 33 35 42 33 12 2.75

7 33 28 27 30 27 9 3.00

8 23 21 21 22 21 7 3.00

9 19 16 16 17 16 6 2.67

10 14 13 15 13 13 5 2.60

89



Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

11 11 9 12 12 9 4 2.25

12 11 8 10 11 8 3 2.67

13 11 8 9 9 8 3 2.67

14 8 8 9 6 6 3 2.00

15 8 8 6 6 6 2 3.00

16 6 6 5 6 5 2 2.50

17 6 4 4 5 4 2 2.00

18 4 4 4 5 4 2 2.00

19 4 4 4 3 3 2 1.50

20 4 3 3 3 3 2 1.50
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

14.758 3.728 5.117 5.273

3.526 0.874 1.092 1.170

1.638 0.437 0.452 0.530

0.811 0.265 0.281 0.312

0.530 0.140 0.203 0.234

0.390 0.140 0.125 0.140

0.296 0.094 0.125 0.125

0.203 0.094 0.078 0.125

0.203 0.047 0.047 0.078

0.125 0.062 0.078 0.062

0.140 0.062 0.047 0.062

0.094 0.016 0.031 0.062

0.125 0.047 0.047 0.031

0.078 0.047 0.062 0.031

0.094 0.047 0.016 0.016

0.078 0.047 0.031 0.031

0.062 0.016 0.031 0.047

0.031 0.016 0.031 0.016

0.062 0.031 0.031 0.031

0.031 0.016 0.031 0.000
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Figure 37 P=[0,0;60,0;40,0;0,0]

A.7 P=[0,0;60,0;40,0;0,0]

Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

1 501 327 417 431 327 128 2.55

2 132 91 101 116 91 32 2.84

3 56 45 48 56 45 15 3.00

4 32 30 30 30 30 8 3.75

5 21 16 20 21 16 6 2.67

6 14 14 15 16 14 4 3.50

7 11 14 12 10 10 3 3.33

8 11 8 10 9 8 2 4.00

9 7 7 7 8 7 2 3.50

10 6 7 7 7 7 2 3.50
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Required Guards

β K and A MOPAD1 MOPAD2 MOPAD3 MOPAD ω MOPADω

11 7 5 6 6 5 2 2.50

12 4 4 6 6 4 1 4.00

13 4 4 5 5 4 1 4.00

14 4 4 5 5 4 1 4.00

15 4 4 4 4 4 1 4.00

16 4 4 4 4 4 1 4.00

17 4 4 4 3 3 1 3.00

18 4 4 4 3 3 1 3.00

19 2 2 2 3 2 1 2.00

20 2 2 2 3 2 1 2.00
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Computation Time (Sec)

β K and A MOPAD1 MOPAD2 MOPAD3

4.415 1.170 1.747 1.622

1.123 0.328 0.343 0.437

0.484 0.156 0.172 0.203

0.265 0.094 0.125 0.109

0.172 0.078 0.094 0.078

0.094 0.047 0.047 0.047

0.094 0.062 0.047 0.062

0.109 0.047 0.047 0.031

0.047 0.047 0.047 0.031

0.031 0.016 0.031 0.016

0.078 0.031 0.016 0.047

0.016 0.031 0.047 0.016

0.047 0.031 0.016 0.047

0.047 0.031 0.016 0.016

0.031 0.031 0.016 0.031

0.031 0.031 0.031 0.016

0.016 0.016 0.016 0.031

0.047 0.016 0.016 0.000

0.016 0.000 0.000 0.016

0.000 0.031 0.031 0.031

A.8 900 Independent Randomly Generated P and β

The data in this table was generated by implementing the MOPAD method

on 900 independent and randomly generated polygons with independent randomly

generated visibility ranges. The column “ Vertices” is the number of vertices in P .
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vertices ω MOPAD MOPAD ω

3 1 4 4.00

3 1 4 4.00

3 1 8 8.00

3 1 2 2.00

3 1 2 2.00

3 1 4 4.00

3 1 1 1.00

3 1 4 4.00

3 1 5 5.00

3 1 4 4.00

3 1 4 4.00

3 1 8 8.00

3 1 1 1.00

3 1 8 8.00

3 1 2 2.00

3 1 4 4.00

3 1 4 4.00

3 1 1 1.00

4 1 1 1.00

4 1 2 2.00

4 1 2 2.00

4 1 4 4.00

4 1 3 3.00

4 1 4 4.00

4 1 4 4.00

4 1 2 2.00

5 1 1 1.00

5 1 2 2.00
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vertices ω MOPAD MOPAD ω

3 2 7 3.50

3 2 8 4.00

3 2 6 3.00

3 2 7 3.50

3 2 6 3.00

3 2 7 3.50

3 2 9 4.50

3 2 8 4.00

3 2 16 8.00

3 2 7 3.50

3 2 7 3.50

3 2 6 3.00

4 2 7 3.50

4 2 6 3.00

4 2 4 2.00

4 2 5 2.50

4 2 8 4.00

4 2 8 4.00

4 2 9 4.50

4 2 8 4.00

4 2 8 4.00

5 2 8 4.00

5 2 4 2.00

5 2 5 2.50

5 2 6 3.00

5 2 7 3.50

5 2 8 4.00

5 2 7 3.50
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vertices ω MOPAD MOPAD ω

5 2 4 2.00

5 2 6 3.00

6 2 8 4.00

6 2 8 4.00

6 2 6 3.00

6 2 8 4.00

7 2 7 3.50

7 2 8 4.00

7 2 8 4.00

7 2 4 2.00

8 2 7 3.50

8 2 8 4.00

8 2 8 4.00

8 2 8 4.00

8 2 7 3.50

9 2 7 3.50

9 2 6 3.00

9 2 7 3.50

9 2 5 2.50

11 2 8 4.00

11 2 7 3.50

13 2 6 3.00

13 2 7 3.50

17 2 7 3.50

3 3 12 4.00

3 3 8 2.67

3 3 9 3.00

3 3 10 3.33
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vertices ω MOPAD MOPAD ω

3 3 10 3.33

4 3 12 4.00

4 3 8 2.67

4 3 20 6.67

4 3 8 2.67

4 3 10 3.33

4 3 9 3.00

4 3 9 3.00

4 3 8 2.67

5 3 8 2.67

5 3 12 4.00

5 3 8 2.67

5 3 8 2.67

5 3 9 3.00

5 3 8 2.67

6 3 5 1.67

6 3 8 2.67

6 3 8 2.67

6 3 8 2.67

6 3 8 2.67

6 3 7 2.33

6 3 9 3.00

6 3 8 2.67

7 3 8 2.67

7 3 8 2.67

7 3 8 2.67

7 3 8 2.67

7 3 8 2.67
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vertices ω MOPAD MOPAD ω

7 3 10 3.33

7 3 9 3.00

8 3 8 2.67

8 3 8 2.67

8 3 8 2.67

8 3 8 2.67

8 3 8 2.67

9 3 8 2.67

9 3 8 2.67

9 3 10 3.33

9 3 8 2.67

9 3 7 2.33

9 3 8 2.67

9 3 8 2.67

9 3 9 3.00

9 3 8 2.67

10 3 8 2.67

10 3 8 2.67

10 3 8 2.67

10 3 9 3.00

10 3 8 2.67

10 3 8 2.67

10 3 10 3.33

10 3 10 3.33

10 3 11 3.67

10 3 9 3.00

10 3 8 2.67

11 3 8 2.67
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vertices ω MOPAD MOPAD ω

11 3 8 2.67

11 3 8 2.67

11 3 8 2.67

11 3 8 2.67

12 3 8 2.67

12 3 9 3.00

12 3 8 2.67

12 3 8 2.67

13 3 8 2.67

13 3 8 2.67

13 3 8 2.67

13 3 8 2.67

13 3 9 3.00

13 3 10 3.33

13 3 9 3.00

13 3 8 2.67

13 3 8 2.67

13 3 8 2.67

13 3 8 2.67

14 3 8 2.67

14 3 8 2.67

14 3 7 2.33

14 3 8 2.67

14 3 8 2.67

14 3 9 3.00

14 3 9 3.00

14 3 8 2.67

14 3 8 2.67
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vertices ω MOPAD MOPAD ω

14 3 8 2.67

15 3 8 2.67

15 3 9 3.00

15 3 10 3.33

15 3 10 3.33

15 3 10 3.33

15 3 8 2.67

15 3 8 2.67

16 3 8 2.67

16 3 8 2.67

16 3 8 2.67

16 3 8 2.67

16 3 8 2.67

16 3 8 2.67

17 3 8 2.67

17 3 8 2.67

17 3 8 2.67

17 3 8 2.67

17 3 8 2.67

18 3 8 2.67

18 3 8 2.67

18 3 8 2.67

18 3 8 2.67

18 3 8 2.67

19 3 8 2.67

19 3 9 3.00

19 3 9 3.00

19 3 8 2.67
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vertices ω MOPAD MOPAD ω

19 3 8 2.67

19 3 8 2.67

19 3 8 2.67

19 3 8 2.67

19 3 8 2.67

19 3 8 2.67

20 3 8 2.67

20 3 8 2.67

20 3 8 2.67

20 3 8 2.67

20 3 9 3.00

20 3 10 3.33

20 3 8 2.67

20 3 8 2.67

3 4 14 3.50

3 4 13 3.25

4 4 16 4.00

4 4 16 4.00

4 4 13 3.25

4 4 13 3.25

5 4 8 2.00

5 4 11 2.75

5 4 11 2.75

5 4 13 3.25

6 4 11 2.75

6 4 11 2.75

6 4 14 3.50

6 4 12 3.00
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vertices ω MOPAD MOPAD ω

6 4 13 3.25

7 4 13 3.25

7 4 16 4.00

7 4 12 3.00

7 4 12 3.00

7 4 14 3.50

8 4 14 3.50

8 4 12 3.00

8 4 15 3.75

8 4 12 3.00

9 4 12 3.00

9 4 9 2.25

9 4 11 2.75

9 4 12 3.00

9 4 16 4.00

10 4 12 3.00

10 4 13 3.25

10 4 9 2.25

10 4 8 2.00

10 4 15 3.75

10 4 12 3.00

10 4 14 3.50

10 4 16 4.00

10 4 12 3.00

11 4 14 3.50

12 4 16 4.00

12 4 12 3.00

12 4 11 2.75
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vertices ω MOPAD MOPAD ω

12 4 8 2.00

12 4 8 2.00

12 4 13 3.25

12 4 11 2.75

13 4 12 3.00

13 4 12 3.00

13 4 13 3.25

13 4 13 3.25

13 4 10 2.50

13 4 12 3.00

13 4 11 2.75

13 4 12 3.00

13 4 10 2.50

13 4 14 3.50

14 4 10 2.50

14 4 8 2.00

14 4 11 2.75

14 4 8 2.00

14 4 10 2.50

14 4 9 2.25

14 4 14 3.50

15 4 8 2.00

15 4 15 3.75

15 4 11 2.75

15 4 9 2.25

15 4 13 3.25

15 4 16 4.00

15 4 11 2.75
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vertices ω MOPAD MOPAD ω

15 4 10 2.50

16 4 11 2.75

16 4 12 3.00

16 4 12 3.00

16 4 13 3.25

17 4 12 3.00

17 4 11 2.75

17 4 12 3.00

17 4 10 2.50

17 4 9 2.25

18 4 15 3.75

18 4 11 2.75

18 4 10 2.50

18 4 14 3.50

18 4 14 3.50

18 4 12 3.00

18 4 13 3.25

19 4 14 3.50

19 4 12 3.00

20 4 10 2.50

20 4 13 3.25

20 4 8 2.00

20 4 8 2.00

20 4 9 2.25

5 5 12 2.40

5 5 16 3.20

5 5 16 3.20

5 5 14 2.80
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vertices ω MOPAD MOPAD ω

5 5 16 3.20

7 5 16 3.20

7 5 16 3.20

7 5 13 2.60

7 5 16 3.20

8 5 16 3.20

8 5 16 3.20

8 5 16 3.20

8 5 16 3.20

9 5 16 3.20

9 5 13 2.60

9 5 16 3.20

9 5 16 3.20

10 5 13 2.60

10 5 16 3.20

10 5 12 2.40

10 5 16 3.20

10 5 16 3.20

11 5 16 3.20

11 5 16 3.20

11 5 16 3.20

11 5 12 2.40

11 5 12 2.40

11 5 12 2.40

12 5 15 3.00

12 5 14 2.80

12 5 16 3.20

13 5 16 3.20
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vertices ω MOPAD MOPAD ω

13 5 16 3.20

13 5 12 2.40

13 5 16 3.20

13 5 16 3.20

14 5 13 2.60

14 5 16 3.20

15 5 16 3.20

15 5 12 2.40

16 5 16 3.20

16 5 12 2.40

17 5 16 3.20

17 5 16 3.20

17 5 12 2.40

17 5 16 3.20

17 5 16 3.20

18 5 16 3.20

18 5 16 3.20

19 5 15 3.00

19 5 16 3.20

19 5 12 2.40

19 5 16 3.20

20 5 16 3.20

20 5 12 2.40

3 6 20 3.33

6 6 16 2.67

7 6 16 2.67

7 6 17 2.83

7 6 17 2.83
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vertices ω MOPAD MOPAD ω

8 6 18 3.00

9 6 16 2.67

9 6 16 2.67

9 6 17 2.83

10 6 17 2.83

10 6 16 2.67

10 6 16 2.67

11 6 16 2.67

11 6 16 2.67

11 6 16 2.67

12 6 15 2.50

12 6 16 2.67

12 6 16 2.67

13 6 16 2.67

13 6 16 2.67

14 6 16 2.67

15 6 13 2.17

15 6 16 2.67

16 6 17 2.83

16 6 16 2.67

16 6 13 2.17

16 6 14 2.33

17 6 18 3.00

17 6 16 2.67

17 6 16 2.67

18 6 16 2.67

18 6 16 2.67

19 6 12 2.00
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vertices ω MOPAD MOPAD ω

19 6 16 2.67

19 6 13 2.17

20 6 16 2.67

20 6 16 2.67

20 6 12 2.00

20 6 16 2.67

4 7 20 2.86

4 7 15 2.14

5 7 26 3.71

5 7 22 3.14

6 7 19 2.71

6 7 19 2.71

8 7 18 2.57

8 7 18 2.57

8 7 16 2.29

8 7 21 3.00

9 7 17 2.43

9 7 18 2.57

9 7 16 2.29

10 7 20 2.86

10 7 17 2.43

11 7 21 3.00

11 7 19 2.71

11 7 18 2.57

12 7 16 2.29

12 7 16 2.29

12 7 19 2.71

12 7 17 2.43
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vertices ω MOPAD MOPAD ω

13 7 21 3.00

14 7 17 2.43

14 7 21 3.00

14 7 17 2.43

15 7 17 2.43

15 7 19 2.71

16 7 17 2.43

16 7 15 2.14

17 7 18 2.57

17 7 17 2.43

18 7 17 2.43

19 7 17 2.43

20 7 15 2.14

4 8 23 2.88

4 8 23 2.88

5 8 28 3.50

6 8 27 3.38

6 8 23 2.88

6 8 21 2.63

7 8 25 3.13

7 8 19 2.38

7 8 24 3.00

7 8 23 2.88

8 8 18 2.25

8 8 22 2.75

8 8 19 2.38

9 8 21 2.63

9 8 23 2.88
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vertices ω MOPAD MOPAD ω

9 8 26 3.25

9 8 21 2.63

10 8 19 2.38

11 8 17 2.13

11 8 20 2.50

12 8 21 2.63

12 8 19 2.38

12 8 23 2.88

13 8 19 2.38

14 8 18 2.25

15 8 21 2.63

15 8 21 2.63

16 8 17 2.13

16 8 21 2.63

16 8 21 2.63

17 8 22 2.75

18 8 17 2.13

19 8 19 2.38

20 8 19 2.38

3 9 33 3.67

5 9 29 3.22

5 9 26 2.89

5 9 28 3.11

5 9 33 3.67

6 9 30 3.33

7 9 25 2.78

7 9 24 2.67

8 9 19 2.11
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vertices ω MOPAD MOPAD ω

8 9 28 3.11

9 9 26 2.89

9 9 29 3.22

10 9 24 2.67

10 9 22 2.44

10 9 27 3.00

11 9 24 2.67

11 9 20 2.22

11 9 28 3.11

12 9 25 2.78

12 9 28 3.11

12 9 26 2.89

14 9 23 2.56

14 9 27 3.00

16 9 25 2.78

16 9 22 2.44

17 9 22 2.44

17 9 26 2.89

17 9 28 3.11

17 9 18 2.00

17 9 29 3.22

18 9 25 2.78

18 9 26 2.89

19 9 23 2.56

20 9 25 2.78

20 9 25 2.78

5 10 32 3.20

6 10 29 2.90
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vertices ω MOPAD MOPAD ω

6 10 33 3.30

9 10 30 3.00

11 10 32 3.20

11 10 32 3.20

12 10 23 2.30

13 10 30 3.00

14 10 22 2.20

15 10 21 2.10

15 10 29 2.90

15 10 30 3.00

15 10 21 2.10

20 10 21 2.10

20 10 30 3.00

4 11 25 2.27

7 11 25 2.27

9 11 31 2.82

9 11 32 2.91

12 11 34 3.09

12 11 32 2.91

13 11 33 3.00

15 11 32 2.91

16 11 32 2.91

16 11 32 2.91

16 11 31 2.82

18 11 32 2.91

19 11 32 2.91

20 11 32 2.91

3 12 30 2.50
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vertices ω MOPAD MOPAD ω

4 12 43 3.58

6 12 32 2.67

6 12 31 2.58

6 12 26 2.17

6 12 34 2.83

6 12 24 2.00

7 12 37 3.08

11 12 36 3.00

11 12 33 2.75

11 12 32 2.67

15 12 35 2.92

17 12 34 2.83

18 12 27 2.25

19 12 33 2.75

20 12 32 2.67

5 13 37 2.85

5 13 42 3.23

6 13 33 2.54

7 13 32 2.46

8 13 36 2.77

8 13 33 2.54

13 13 33 2.54

15 13 32 2.46

16 13 36 2.77

17 13 34 2.62

17 13 23 1.77

3 14 41 2.93

6 14 42 3.00

114



vertices ω MOPAD MOPAD ω

7 14 34 2.43

9 14 38 2.71

11 14 37 2.64

11 14 35 2.50

11 14 35 2.50

13 14 39 2.79

17 14 37 2.64

17 14 39 2.79

19 14 34 2.43

19 14 26 1.86

19 14 37 2.64

20 14 37 2.64

20 14 36 2.57

6 15 27 1.80

6 15 36 2.40

7 15 37 2.47

10 15 45 3.00

11 15 36 2.40

13 15 41 2.73

17 15 45 3.00

17 15 39 2.60

17 15 37 2.47

18 15 39 2.60

18 15 44 2.93

20 15 37 2.47

8 16 48 3.00

9 16 32 2.00

11 16 27 1.69
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vertices ω MOPAD MOPAD ω

11 16 44 2.75

14 16 47 2.94

15 16 29 1.81

17 16 40 2.50

18 16 28 1.75

18 16 44 2.75

20 16 27 1.69

3 17 39 2.29

4 17 34 2.00

6 17 30 1.76

6 17 32 1.88

12 17 54 3.18

13 17 51 3.00

14 17 52 3.06

19 17 30 1.76

3 18 52 2.89

4 18 55 3.06

5 18 56 3.11

6 18 53 2.94

8 18 52 2.89

11 18 52 2.89

12 18 59 3.28

14 18 28 1.56

14 18 31 1.72

15 18 57 3.17

18 18 31 1.72

18 18 56 3.11

20 18 56 3.11
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vertices ω MOPAD MOPAD ω

5 19 57 3.00

7 19 62 3.26

11 19 34 1.79

11 19 37 1.95

13 19 30 1.58

14 19 62 3.26

19 19 61 3.21

19 19 58 3.05

20 19 61 3.21

8 20 64 3.20

8 20 62 3.10

8 20 61 3.05

12 20 63 3.15

12 20 33 1.65

12 20 62 3.10

13 20 61 3.05

18 20 31 1.55

18 20 39 1.95

20 20 63 3.15

8 21 39 1.86

13 21 63 3.00

17 21 63 3.00

17 21 63 3.00

18 21 38 1.81

4 22 41 1.86

6 22 63 2.86

9 22 66 3.00

9 22 63 2.86
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vertices ω MOPAD MOPAD ω

15 22 64 2.91

5 23 67 2.91

7 23 66 2.87

12 23 66 2.87

17 23 64 2.78

18 23 64 2.78

19 23 64 2.78

19 23 64 2.78

4 24 65 2.71

7 24 66 2.75

10 24 66 2.75

14 24 64 2.67

14 24 65 2.71

15 24 64 2.67

18 24 65 2.71

7 25 64 2.56

9 25 65 2.60

18 25 34 1.36

20 25 64 2.56

4 26 68 2.62

8 26 38 1.46

10 26 67 2.58

14 26 64 2.46

14 26 64 2.46

15 26 38 1.46

16 26 64 2.46

9 27 67 2.48

12 27 44 1.63
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vertices ω MOPAD MOPAD ω

16 27 38 1.41

18 27 36 1.33

6 28 82 2.93

6 28 77 2.75

8 28 69 2.46

11 28 69 2.46

16 28 65 2.32

16 28 66 2.36

19 28 69 2.46

8 29 71 2.45

14 29 71 2.45

20 29 75 2.59

6 30 85 2.83

7 30 85 2.83

8 30 44 1.47

5 31 79 2.55

14 31 45 1.45

15 31 46 1.48

16 31 77 2.48

18 31 77 2.48

19 31 80 2.58

18 33 81 2.45

17 34 46 1.35

18 34 84 2.47

15 35 46 1.31

6 36 98 2.72

10 36 50 1.39

10 36 91 2.53

119



vertices ω MOPAD MOPAD ω

13 36 56 1.56

14 36 95 2.64

16 36 90 2.50

18 36 53 1.47

17 37 94 2.54

20 37 51 1.38

15 38 49 1.29

12 39 117 3.00

16 40 124 3.10

16 41 120 2.93

18 42 127 3.02

12 43 126 2.93

19 43 127 2.95

20 43 127 2.95

16 44 127 2.89

5 45 125 2.78

7 45 125 2.78

7 45 54 1.20

8 45 129 2.87

17 45 130 2.89

18 45 50 1.11

19 45 127 2.82

6 46 114 2.48

15 46 128 2.78

15 46 128 2.78

15 46 131 2.85

8 47 129 2.74

11 47 132 2.81
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vertices ω MOPAD MOPAD ω

19 47 127 2.70

8 48 129 2.69

6 49 135 2.76

11 49 128 2.61

14 50 131 2.62

16 50 129 2.58

18 50 129 2.58

16 52 131 2.52

20 52 131 2.52

6 53 136 2.57

6 53 147 2.77

13 53 136 2.57

18 53 55 1.04

5 54 138 2.56

18 55 56 1.02

5 57 148 2.60

7 58 143 2.47

15 58 137 2.36

8 60 149 2.48

12 60 144 2.40

19 60 147 2.45

4 61 143 2.34

17 61 147 2.41

6 63 142 2.25

19 63 146 2.32

6 64 178 2.78

7 64 163 2.55

10 64 159 2.48
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vertices ω MOPAD MOPAD ω

11 64 160 2.50

5 65 174 2.68

8 65 150 2.31

8 67 190 2.84

8 67 68 1.01

10 67 77 1.15

14 67 192 2.87

16 67 175 2.61

14 68 198 2.91

11 69 209 3.03

13 69 74 1.07

17 69 198 2.87

20 69 204 2.96

6 71 217 3.06

20 71 215 3.03

4 72 197 2.74

16 72 226 3.14

5 75 93 1.24

9 76 217 2.86

16 76 83 1.09

14 78 227 2.91

15 80 246 3.08

10 85 252 2.96

16 85 253 2.98

18 86 123 1.43

9 87 96 1.10

12 87 253 2.91

14 88 250 2.84
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vertices ω MOPAD MOPAD ω

12 89 103 1.16

16 96 115 1.20

14 97 257 2.65

18 97 257 2.65

20 98 257 2.62

7 99 258 2.61

19 99 154 1.56

15 100 163 1.63

14 101 257 2.54

19 101 258 2.55

16 102 258 2.53

4 104 296 2.85

7 104 260 2.50

15 105 265 2.52

3 106 308 2.91

11 108 266 2.46

19 109 264 2.42

7 110 261 2.37

20 114 266 2.33

16 117 274 2.34

3 120 289 2.41

18 120 279 2.33

18 124 175 1.41

20 124 165 1.33

3 129 205 1.59

12 130 298 2.29

11 133 302 2.27

19 133 321 2.41
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vertices ω MOPAD MOPAD ω

20 138 300 2.17

17 141 323 2.29

19 142 303 2.13

17 145 357 2.46

4 150 404 2.69

10 152 406 2.67

17 153 417 2.73

15 154 472 3.06

20 154 369 2.40

10 156 315 2.02

9 158 446 2.82

13 162 484 2.99

13 166 496 2.99

19 183 500 2.73

5 185 362 1.96

12 188 506 2.69

16 192 412 2.15

10 205 508 2.48

5 206 508 2.47

12 206 505 2.45

4 211 221 1.05

14 216 367 1.70

8 220 528 2.40

16 221 403 1.82

13 222 518 2.33

11 230 543 2.36

11 236 502 2.13

13 248 531 2.14
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vertices ω MOPAD MOPAD ω

7 259 652 2.52

20 265 761 2.87

9 268 700 2.61

19 271 819 3.02

16 274 774 2.82

4 279 714 2.56

11 330 945 2.86

3 331 904 2.73

3 333 897 2.69

13 357 1000 2.80

19 357 1019 2.85

19 362 467 1.29

7 390 1002 2.57

10 420 976 2.32

3 424 617 1.46

14 482 1040 2.16

9 483 1067 2.21

10 484 1068 2.21

20 494 1065 2.16

15 512 1080 2.11

10 520 1179 2.27

7 592 1633 2.76

16 596 781 1.31

17 615 1579 2.57

16 632 956 1.51

5 649 1728 2.66

9 665 1880 2.83

12 717 1056 1.47
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vertices ω MOPAD MOPAD ω

15 872 2004 2.30

5 954 2313 2.42

20 1062 2479 2.33

12 1200 3541 2.95

13 1428 1567 1.10

15 1461 3957 2.71

4 1546 3645 2.36

14 1683 1985 1.18

9 1696 2036 1.20

17 1717 4086 2.38

4 1726 3916 2.27

19 1754 3154 1.80

14 2033 4972 2.45

12 2065 4466 2.16

12 2091 5182 2.48

4 2845 4568 1.61

17 3121 7900 2.53

3 3124 7216 2.31

18 3763 8443 2.24

5 3944 10520 2.67

19 4031 8461 2.10

7 4416 10639 2.41

11 5054 14103 2.79

8 5111 15103 2.95

8 5274 14248 2.70

15 5697 6001 1.05

4 8286 19655 2.37

18 9297 21312 2.29
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vertices ω MOPAD MOPAD ω

10 13098 32046 2.45

10 13929 32299 2.32

20 17020 44032 2.59

12 19535 52123 2.67
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Appendix B. 25 Key Cities

Metro Area Latitude Longitude

1 New York, NY 40.38.22.400 N 073.45.59.200 W

2 Los Angeles, CA 33.55.56.600 N 118.24.25.000 W

3 Chicago, IL 41.58.49.100 N 087.55.42.000 W

4 Houston, TX 29.59.53.800 N 095.21.12.800 W

5 Philadelphia, PA 39.51.32.700 N 075.16.00.200 W

6 Phoenix, AZ 33.25.37.200 N 112.00.23.400 W

7 San Antonio, TX 29.33.32.200 N 098.28.09.400 W

8 San Diego, CA 32.52.59.800 N 117.08.37.800 W

9 Dallas, TX 32.55.20.500 N 097.02.37.800 W

10 San Jose, CA 37.25.28.300 N 122.00.54.400 W

11 Detroit, MI 42.12.47.200 N 083.22.44.800 W

12 Indianapolis, IN 39.42.08.800 N 086.17.19.800 W

13 Jacksonville, FL 30.29.36.000 N 081.41.33.600 W

14 San Francisco, CA 37.42.22.100 N 122.13.31.200 W

15 Columbus, OH 40.00.28.200 N 082.53.39.600 W

16 Orlando, FL 28.23.41.400 N 081.18.16.700 W

17 Seattle, WA 47.27.09.400 N 122.19.01.700 W

18 Boston, MA 42.20.54.800 N 071.00.21.900 W

19 Denver, CO 39.45.38.200 N 104.52.26.900 W

20 Washington, DC 38.50.42.700 N 077.02.00.400 W

21 Las Vegas, NV 36.05.00.400 N 115.09.36.100 W

22 Atlanta, GA 33.53.39.200 N 084.29.54.900 W

23 Virginia Beach, VA 36.49.38.700 N 076.00.49.600 W

24 Miami, FL 25.47.52.000 N 080.17.36.300 W

25 Minneapolis, MN 44.53.25.400 N 093.13.50.300 W
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Determining Locations of
Multi-Function Phased Array

Radar

— BLUE DART —

Kassandra M. Merritt, Capt, USAF∗

13 June 2011

Air surveillance of United States territory is an essential Department of
Defense (DoD) function. In the event of an attack on North America by an
incoming aerial threat such as a hijacked or enemy airplane, missile, or any
other threat to national security, the surveillance capabilities of the DoD,
Department of Homeland Security (DHS), and Federal Aviation Adminis-
tration (FAA) are critical to discovering and tracking the threat so that the
DoD can eliminate it. The current National Airspace System (NAS) pro-
vides coverage from the surface to 60,000 feet mean sea level (MSL) using
primary and secondary FAA long and short range radars, defense radars, and
additional surveillance systems along the borders and other areas of interest.
The current radar system consists of weather and aerial surveillance radars
that operate by using a rotating antenna to sweep a large area. Many of
these radars are reaching the end of their design life within the next ten to
twenty years. Additionally, the current surveillance system has significant
surveillance gaps at low altitude and is limited in its ability to detect objects
with small radar cross sections such as small missiles. The Multi-Function

∗Masters Student, Department of Operational Sciences, Air Force Institute of Technol-
ogy, Dayton, OH
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Phased Array Radar (MPAR) is capable of performing several missions in-
cluding weather and aerial surveillance with one unit. Additionally, MPAR
units provide increased detection capabilities for small radar cross section ob-
jects and increased reliability. By replacing the current radar network with
a single integrated network of MPAR units, surveillance capabilities can be
greatly enhanced and life cycle cost can be reduced.

The question of how to optimally use a limited number of resources is
not new. Researchers have tried to answer this question in several different
forms. Many of these traditional models of the problem are limited in their
scope and or scale and are therefore not able to handle the MPAR location
problem. Additionally, because of the size of the area of desired coverage and
budget restrictions, full coverage of the territory at low altitude may not be
possible. There are currently no methods available for determining where to
locate the MPAR units in order to provide some level of coverage less than
100 percent.

The developed methodology can be used to determine a small number
and location of MPAR units required to cover any given region. Specifically,
the methodology treats the region of surveillance as a polygon and the MPAR
units as guards with a circular area of visibility with a constant range. The
method can determine this small set of MPAR units given a requirement for
full coverage or for any percentage between 0 and 100. This methodology
can also be used to provide recommendations for surveillance over key areas
or events, placement of communications resources or other limited range
resources with unconstrained available locations at a reduced cost.

The current age of the NAS and availability of new technology requires
that the system be updated in the near future. Because of the size of this
system and the cost associated with each unit, it is important to investigate
how to place these units and how many will be required to attain accept-
able coverage. Current methodologies are limited in their ability to handle
problems of this magnitude and are unable to consider less than 100 percent
coverage. The methodology developed as a result of this research can be used
to provide insight for the acquisitions process and options for placing units
under budgetary or operational constraints that result in a need for less than
100 percent coverage.
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